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Objective: Failed back surgery syndrome (FBSS) is a term embracing a constellation of conditions that describes persistent or
recurring low back pain, with or without sciatica following one or more spine surgeries. It has been shown in animals that electrical
stimulation of the high cervical C2 area can suppress pain stimuli derived from the L5-S1 dermatome. It is unknown whether C2
electrical stimulation in humans can be used to treat pain derived from the L5-S1 area, and a case is reported in which subcuta-
neous C2 is applied to treat FBSS.

Case: A patient presents to the neuromodulation clinic because of FBSS (after three lumbar diskectomies) and noninvasive
neuromodulation is performed consisting of transcutaneous electrical nerve stimulation (TENS) at C2. The C2 TENS stimulation is
successful in improving pain. It induces paresthesias in the C2 dermatome above a certain amplitude threshold, but does not
generate paresthesias in the pain area. However, the patient becomes allergic to the skin-applied TENS electrodes and therefore
a new treatment strategy is discussed with the patient. A subcutaneous C2 electrode is inserted under local anesthesia, and
attached to an external pulse generator.

Methods: Three stimulation designs are tested: a classical tonic stimulation, consisting of 40 Hz stimulation, a placebo, and a burst
stimulation, consisting of 40 Hz burst mode, with five spikes delivered at 500 Hz at 1000 msec pulse width and 1000 msec interspike
interval.

Results: The patient’s stimulation results demonstrate that burst mode is superior to placebo and tonic mode, and she receives
a fully implanted C2 electrode connected to an internal pulse generator via an extension wire.

Conclusion: The burst design is capable of both suppressing the least and worst pain effectively, and she has remained almost
pain-free for over three years.
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INTRODUCTION

Failed back surgery syndrome (FBSS) is a term embracing a con-
stellation of conditions that describes persistent or recurring low
back pain, with or without sciatica following one or more spine
surgeries (1).

The number of patients suffering from FBSS has increased with
increasing rates of spine surgery (2). Despite advances in technol-
ogy and surgical techniques, the proportion of FBSS is similar to
what it was several decades ago (3) and varies with the type of
surgical procedure: FBSS in lumbar diskectomy is relatively low at
approximately 10%, laminectomy at about 30–35%, and spinal
fusion has the highest FBSS rates (2). The impact of FBSS on an
individual’s quality of life and functional status is considerable and
more disabling when compared with other common chronic pain
conditions (2). Treatment consists of conservative medical manage-
ment, reoperation, or spinal cord stimulation (SCS). SCS has been
shown to be superior to both conventional medical management
and reoperation (4–11). Even though 60% of patients feel they are
improved by SCS (12), its major disadvantages are the high rate of
complications such as hardware failure (13) and the fact that the
stimulation replaces pain by paresthesias, which can be disturbing
as well (14).

The greater occipital nerve afferents enter the C2 segment of the
spinal cord at the level of the nucleus caudalis of the trigeminal
nerve forming the trigeminocervical complex. The nucleus caudalis
projects to the thalamus, which relays sensory input to the cortex.
Furthermore, animal studies have shown connections between
neurons of the C2 spinal cord and the hypothalamus (15), the thala-
mus (16), the periaqueductal gray (16), the amygdala (15), anterior
cingulate cortex (ACC) (17), and posterior insula (17). Thus, the C2
spinal cord is directly connected to most areas of the pain matrix.
This was also demonstrated in a recent functional magnetic reso-
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nance imaging study, showing that depending on the stimulation
pattern (burst vs. tonic) and frequency, different brain areas are
modulated (18). Positron emission tomography scans performed
during C2 stimulation revealed significant changes in the regional
cerebral blood flow in the dorsal rostral pons, ACC, and the cuneus,
correlating to pain scores. Changes in the ACC and the left pulvinar
correlated to paresthesia scores (19). As these structures are well
known to be involved in the brain pain matrix, these data might
suggest that stimulation of the greater occipital nerve results in a
modulation of brain activity in pain-related cortical and subcortical
structures.

This concept has been used to treat widespread bodily pain in
fibromyalgia by subcutaneous C2 stimulation (20,21) and could
potentially be extended to pain related to FBSS.

Case Report
A 37-year-old woman presents with FBSS after three lumbar spine

operations. Three years prior to the consultation at the BRAI2N neu-
romodulation center she underwent a lumbar diskectomy at L4-L5
twice followed by new diskectomy at L4-L5 and L5-S1 one year later.

She develops typical neuropathic leg and back pain, and is
treated by medication consisting of pregabalin, tramadol+
paracetamol, venlafaxine, amitriptyline, vitamin B, and
lormetazepam without much avail.

Due to FBSS, noninvasive neuromodulation is performed consist-
ing of transcutaneous electrical nerve stimulation (TENS) at C2. The
C2 nerve stimulation induces paresthesias in the C2 dermatome
above a certain amplitude threshold, but does not generate pares-
thesias in the pain area. With TENS applied via skin electrodes at the
C2 dermatome the pain in her leg improves to 3–4/10 without
improvement of the back pain.

Once the patient becomes allergic to the electrodes a new treat-
ment strategy is discussed with the patient. She gets the choice
between a spinal cord stimulator and a subcutaneous C2 electrode.
As both advantages and disadvantages of the SCS and C2 were
explained she prefers a trial with a subcutaneous C2 electrode.

A subcutaneous C2 wire electrode (Octrode, SJMedical Neurodi-
vision, Plano, TX, USA) is inserted under local anesthesia (Fig. 1). The
single octrode is inserted 2.6 cm lateral to the midline, below the
level of the inion. As the array length is 5.2 cm, four of the eight
contacts are located on the left side, and four on the right side. A
sharp turn and loop are used as means to prevent migration of the
wire electrode (Fig. 1). The wire electrode is attached to an external
pulse generator (EON, SJMedical Neurodivision, Plano, TX, USA)
implanted in subcutaneous area at the buttock. The contact settings
are +-+-+-+-.

Three stimulation designs are tested, each during one week: a
classical tonic stimulation, consisting of 40 Hz, a placebo, and a
burst stimulation, consisting of 40 Hz burst mode, with five spikes
delivered at 500 Hz at 1000 msec pulse width and 1000 msec inter-
spike interval. All stimulations are performed subthreshold for par-
esthesias. The amplitude is increased progressively up to the
moment paresthesias are perceived, and subsequently the stimula-
tion amplitude is decreased so no paresthesias are felt in the C2
dermatome, even with manual compression on the area overlying
the electrode. Placebo stimulation is performed by further decreas-
ing the amplitude to 0 mA. Burst stimulation is performed with a
custom-made programmer, commercially not yet available (18,22–
24). The patient is asked to score her pain on a visual analog scale
from 0 to 10 (0: no pain, 10 maximally imaginable pain). At each
evaluation, after a week of tonic, placebo, or burst stimulation, pain

scores are asked for back pain, leg pain, and pain in general during
the stimulation period. Pain scores are also asked for the worst pain
and least pain during the stimulation period as well as on the
moment of the evaluation (pain now). Also changes in the Pain
Vigilance and Awareness Questionnaire are used as a measurement
of stimulation efficacy. The raw visual analog scale and Pain Vigi-
lance and Awareness Questionnaire data are presented in Table 1 for
the initial trial period, and the data after two years of stimulation are
presented in Table 2.

Her stimulation results demonstrate that burst mode is superior
to placebo and tonic mode (Table 1), and she receives a fully
implanted C2 electrode connected to an internal pulse generator
via an extension wire. The burst design is capable of both suppress-

Figure 1. Graphical depiction of wire electrode (Octrode, SJMedical, Plano, TX,
USA) inserted subcutaneously in the C2 dermatome. The single octrode is
inserted 2.6 cm lateral to the midline, below the level of the inion. As the array
length is 5.2 cm, four of the eight poles are located on the left side, and four on
the right side. Note the sharp turn and loop to prevent migration of the wire
electrode.

Table 1. Pain Scores Related to Stimulation Design.

Baseline Placebo Tonic Burst

Pain back 8.6 8.4 8 4.6
Pain limb 8.3 7.1 1.3 1.0
Pain general 8.5 6.1 5.4 2.5
PVAQ
Attention to pain 11 13 18 10
Attention to changes in pain 16 15 15 14
VAS
Pain now 8.3 8.2 1.1 1.4
Pain least 8.3 7.6 6.7 0.9
Pain worst 7.3 7.5 2.4 0.2

PVAQ, Pain Vigilance and Awareness Questionnaire; VAS, visual analog
scale.
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ing the least and worst pain effectively, and she has remained
almost pain-free for over three years.

DISCUSSION

Treatment options for FBSS consist of analgesic medication, func-
tional rehabilitation, and in intractable cases SCS or reoperation.
SCS in these intractable cases is superior to conventional medical
management and reoperation (4–11), and because of this reason
more than 50,000 spinal cord stimulators are implanted on a yearly
basis (25). As C2 stimulation can be performed subthreshold for
paresthesias and this results in similar activation patterns in the
brain (26), it is possible to perform C2 stimulation in a placebo-
controlled way to determine its efficacy for FBSS.

Initially noninvasive neuromodulation options were proposed to
the patient, and TENS at C2 was successful, but because she became
allergic to the electrodes applied to the skin, a subcutaneous C2
implant was offered, followed by a fully implantable device once
this proved superior to placebo, as it did. Burst stimulation proved to
be superior to tonic stimulation and placebo, and so the patient’s
internal pulse generator was programmed to burst mode.

Even though it might seem ludicrous at first sight to implant a
subcutaneous electrode in the C2 dermatome for FBSS there is
some literature to potentially explain the mechanism involved in
this novel form of FBSS treatment.

C1-C3 cells represent 45% of all spinothalamic neurons and relay
information from all levels of the cord to periaqueductal gray and/or
thalamus (27) via a calbindin positive pathway (28). C1-C3 spinotha-
lamic tract neurons process sensory information from widespread
regions of the body (29). Upper SCS at C1-C3 modifies firing rate of
>90% of lumbosacral spinothalamic cells (30), and may therefore
modulate transmission of noxious stimuli from lumbosacral origin,
analogous to what has been proposed for the modulation of wide-
spread bodily pain in fibromyalgia (20,21).

The robustness of this novel treatment is demonstrated by the
fact that the burst design is capable of both suppressing the least
and worst pain effectively, and that she has remained almost pain-
free for over three years.

The positive results of this case report warrant a prospective
study of a larger sample of FBSS patients in order to verify whether
this represents an exceptional case or whether this very safe and

relatively noninvasive procedure could be beneficial for a large
group of FBSS patients. It should also be verified whether TENS
applied to the C2 dermatome can reliably predict response to sub-
cutaneous C2 stimulation via an implanted electrode, as this could
be an easy prognostic test. However, group data are needed to
confirm or disprove this possibility.

The exact mechanism of how this C2 stimulation can modulate
FBSS still has to be elucidated. Performing functional magnetic reso-
nance imaging (18), positron emission tomography, or source local-
ized electroencephalogram studies before, during, and after the C2
stimulation and correlating the functional imaging data to clinical
responses could help to elucidate the working mechanism.

CONCLUSION

This case report proposes a novel treatment for intractable FBSS,
which is easily testable, is noninvasive, and carries less risk than SCS
for the patient.
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