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tACS or tDCS treatment. Our main result was that bifrontal 
tDCS modulates tinnitus annoyance and tinnitus loudness, 
whereas individual alpha-modulated tACS does not yield a 
similar result. This study provides additional insights into the 
role of DLPFC in tinnitus modulation as well as the intersec-
tion between tinnitus and affective/attentional processing.
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Introduction

Tinnitus is an auditory phantom percept with a tone, hiss-
ing, or buzzing sound in the absence of any objective 
physical sound source (Jastreboff 1990). The British Tin-
nitus Association estimates about 10 % of the UK adult 
population has chronic tinnitus. The constant awareness of 
this phantom sound often causes a considerable amount of 
distress. Between 6 and 25 % of the affected people report 
symptoms that are severely debilitating (Eggermont and 
Roberts 2004) and 2–4 % of the whole tinnitus popula-
tion suffers in the worst degree, leading to a noticeable 
decrease in the quality of life (Axelsson and Ringdahl 
1989). Psychological complications such as lifestyle detri-
ment, emotional difficulties, sleep deprivation, work hin-
drance, interference with social interaction and decreased 
overall health have been attributed to tinnitus (Scott and 
Lindberg 2000).

Based on neurobiological research, it is generally 
accepted that most forms of tinnitus are attributable to 
maladaptive plasticity due to damage to the auditory sys-
tem (Muhlnickel et al. 1998), as a mechanism to reduce 
uncertainty related to auditory deafferentation (De Ridder 
et al. 2012b). Changes in neural activity were also observed 
in non-auditory brain structures (Vanneste and De Ridder 
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2012). That is, tinnitus can be considered as an emergent 
network property of multiple, dynamically adaptive, par-
tially overlapping, auditory and non-auditory brain net-
works, each representing a specific aspect of the tinnitus  
(De Ridder et al. 2011). These networks are made up of brain 
areas such as anterior cingulate cortex, posterior cingulate 
cortex, ventromedial prefrontal cortex, dorsal lateral pre-
frontal cortex, orbitofrontal cortex, and parahippocampus. 
In particular, the dorsolateral prefrontal cortex (DLPFC) 
seems to play a specific role in auditory processing. That 
is, the DLPFC has a bilateral facilitatory effect on audi-
tory memory storage and contains auditory memory cells  
(Bodner et al. 1996). The DLPFC also exerts early inhibitory 
modulation of input to primary auditory cortex in humans 
(Knight et al. 1989) and has been found to be associated 
with auditory attention (Voisin et al. 2006) resulting in top-
down modulation of auditory processing (Mitchell et al.  
2005). This was further confirmed by electrophysiological 
data indicating that tinnitus might occur as the result of a 
dysfunction in the top-down inhibitory processes (Norena 
et al. 1999).

Two forms of low-intensity cranial electrical stimulation 
exist for clinical and research purposes: transcranial direct 
current stimulation (tDCS) (Nitsche et al. 2008) and tran-
scranial alternating current stimulation (tACS) (Kanai et al. 
2010). Both methods permit non-invasive brain stimulation 
and have been shown to be effective in modulating corti-
cal excitability as well as guiding human perception and  
behavior. Many groups have studied and reviewed the  
neurophysiological and clinical effects of transcranial brain 
stimulation with direct current, and less effort in recent 
years has been dedicated to the study of stimulation with 
alternating current.

Depending on the polarity of the stimulation, tDCS can 
increase or decrease cortical excitability in the brain regions 
to which it is applied (Miranda et al. 2006). Currently, 
tDCS is usually applied through two surface electrodes, one 
serving as the anode and the other as the cathode, with the 
current flowing constantly from the anode to the cathode 
(George and Aston-Jones 2010). Some of the applied cur-
rent is shunted through scalp tissue, and only a part of the 
applied current passes through the brain (Dymond et al. 
1975). Anodal tDCS typically has an excitatory effect on the 
local cerebral cortex by depolarizing neurons, while under 
the cathode hyperpolarization is induced. The predominant 
effect on the oscillatory activity of the underlying brain area 
seems to be a decrease in gamma-band activity under the 
cathode and an increase in gamma-band activity under the 
anode (Vanneste et al. 2011b). This effect of tDCS typically 
outlasts the stimulation by an hour or longer after a single-
treatment session of sufficiently long stimulation duration 
(Antal et al. 2004).

Several tDCS studies focused on the DLPFC and have 
found successful results for treating major depression 
(Fregni et al. 2006b), mood changes in depression (Fregni 
et al. 2006a), as well as reducing impulsiveness (Beeli et al. 
2008) and tinnitus (Fregni et al. 2006c). In a recent study, 
Vanneste and colleagues demonstrated that a single ses-
sion of tDCS over the DLPFC (anode over right DLPFC) 
yields a transient improvement in subjects with chronic tin-
nitus (Vanneste et al. 2010b), and a pilot study of repeated 
sessions suggests that repeated sessions yield better results 
(Faber et al. 2011) and can possibly be used as a treatment 
(Frank et al. 2011).

A more recent application is tACS which also is poten-
tially capable of interacting with rhythmic neuronal activ-
ity and has perceptual and behavioral consequences (Zaghi 
et al. 2010). This method relies on application of alternat-
ing currents through an electrode. Electrical currents are 
applied constantly at low intensities over a period of time, 
to achieve changes in cortical activity. The waveform of the 
stimulation is sinusoidal and different frequencies can be 
used during stimulation. As such, tACS is better suited to 
modulate functions that are closely related to brain oscilla-
tions at specific frequencies (Zaehle et al. 2010). Previous 
research already demonstrated that tACS strengthens the 
individual alpha frequency of the occipital areas (Zaehle 
et al. 2010).

Recent data indicate the involvement of the DLPFC in 
tinnitus (Faber et al. 2011), a region suggested to integrate 
cognitive and emotional processing (Gray et al. 2002). More 
precisely, it was shown that patients with tinnitus-related 
annoyance showed a decrease in the right DLPFC in the 
alpha frequency (Vanneste et al. 2010a). A recent TMS study 
demonstrated that low-frequency repetitive TMS (rTMS) of 
the auditory cortex in combination of high-frequency rTMS 
of the left DLPFC produces a better improvement of the tin-
nitus complaints in comparison with only low-frequency 
rTMS of the temporal cortex (Kleinjung et al. 2008). Fur-
thermore, a study only stimulating the DLPFC by TMS  
(De Ridder et al. 2012a) and by implanting an electrode over 
the DLPFC (De Ridder et al. 2012c) exerts similar tinnitus-
suppressing effects. As such, it might be that influencing 
this frontal alpha activity could modulate the tinnitus. As 
tACS elevates the endogenous alpha power, frontal tACS at 
the individual alpha frequency of the patient might suppress 
tinnitus as well.

In the present study, the effect of tACS and tDCS applied 
at the DLPFC bilaterally is investigated and compared with 
tinnitus loudness and tinnitus annoyance. We hypothesize 
that tACS might be better suited to suppress tinnitus than 
tDCS as tACS could theoretically normalize the alpha power 
which is known to be decreased in tinnitus (Lorenz et al.  
2009; Weisz et al. 2011).
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Methods and materials

Participants

A total of fifty tinnitus patients (N = 50; 26 females and 24 
males) with a mean age of 51.37 (SD = 12.99 years) were 
selected from the multidisciplinary Tinnitus Research Ini-
tiative (TRI) Clinic of the University Hospital of Antwerp, 
Belgium. Patients had a mean tinnitus duration of 2.85 years 
(SD = 2.10 years). Individuals with pulsatile tinnitus, 
Ménière disease, otosclerosis, chronic headache, neurological 
disorders such as brain tumors, and individuals being treated 
for mental disorders (i.e., neuropsychiatric diseases) were not 
included in the study in order to obtain a homogeneous sam-
ple. All patients had tinnitus for more than 1 year and have a 
tinnitus that is constantly present. No psychoactive neurop-
harmaca were added or removed during the trial period in 
both tACS and tDCS groups. Four patients took medication 
at the time of the experiment (2 patients were assigned to the 
sham tDCS, one person in the real and one sham tACS).

All patients were investigated for the extent of hearing 
loss using audiograms. Tinnitus matching was performed 
looking for tinnitus pitch (frequency) and tinnitus loud-
ness. Participants were requested to refrain from alcohol 
consumption 24 h prior to recording and from caffeinated 
beverages on the day of recording.

This study was approved by the local ethical committee 
(Antwerp University Hospital) and was in accordance with 
the declaration of Helsinki. Patients gave oral informed con-
sent before the procedure.

tACS

EEGs (Mitsar, Nova Tech EEG, Inc, Mesa) were obtained 
1 week before the tACS stimulation in a fully lighted room 
with each participant sitting upright in a comfortable chair. 
The EEG was sampled with 19 electrodes (Fp1, Fp2, F7, F3, 
Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1, O2) 
in the standard 10–20 international placements referenced 
to linked lobes, and impedances were checked to remain 
below 5 kΩ. Data were collected for 100 2-s epochs eyes 
closed, sampling rate = 1,024 Hz, and band passed 0.15–
200 Hz. Data were resampled to 128 Hz, band-pass filtered 
(fast Fourier transform filter) to 2–44 Hz. These data were 
transposed into Eureka Software (Congedo 2002), plotted 
and carefully inspected manually for artifact. All episodic 
artifacts including eye blinks, eye movements, teeth clench-
ing, body movement, or ECG artifacts were removed from 
the stream of the EEG.

To determine the frequency of stimulation, the individual 
alpha frequency (IAF) peak was identified according to lit-
erature guidelines (Klimesch et al. 1999). This individual 
alpha frequency peak was defined as the frequency within 

the range of 6–13 Hz range of the EEG spectrum showing 
maximum power for the priori chosen electrodes F3 and F4.

Alternating current was transmitted by a saline-soaked 
pair of surface sponge (35 cm2) and delivered by specially 
developed, battery-driven, constant current stimulator with 
a maximum output of 10 mA (NeuroConn; http://www.neu
roconn.de/). For each patient receiving tACS, one electrode 
was placed over the left DLPFC and one was placed on 
the right DLPFC as determined by the International 10/20 
Electroencephalogram System corresponding to F3 and F4, 
respectively. The frequency of the tACS was set to the IAF. 
In both real tACS and sham, the AC current was initially 
increased in a ramp-like fashion over several seconds (10 s) 
until reaching 2 mA. In tACS, stimulation was maintained 
for a total of 20 min; in sham, it was turned off after 30 s. 
These parameters for sham stimulation were chosen based 
on previous reports that the perceived sensations on the 
skin, such as tingling, fade usually out in the first 30 s of 
tACS (Nitsche et al. 2003). Additionally, we collected the 
EEG for those patients received real tACS immediately after 
the treatment.

tDCS

Patients who received tDCS underwent an EEG measure-
ment similar to the tACS group. Direct current was trans-
mitted by a saline-soaked pair of surface sponge (35 cm²) 
and delivered by specially developed, battery-driven, con-
stant current stimulator with a maximum output of 10 mA 
(NeuroConn; http://www.neuroconn.de/). For each patient 
receiving tDCS, the cathode was placed over the left DLPFC 
and the anode was placed on the right DLPFC as determined 
by the International 10/20 Electroencephalogram System 
corresponding to F3 and F4, respectively. In both real tDCS 
and sham, the DC current was initially increased in a ramp-
like fashion over several seconds (10 s) until reaching 2 mA. 
In tDCS, stimulation was maintained for a total of 20 min; 
in sham, it was turned off after 30 s. These parameters for 
sham stimulation were chosen based on previous reports that 
the perceived sensations on the skin, such as tingling, fade 
usually out in the first 30 s of tDCS (Nitsche et al. 2003).

Evaluation

Patients were randomly assigned to the tACS or tDCS treat-
ment. Thirteen patients underwent real tACS, 13 patients 
received sham tACS, 12 patients received real tDCS, and 
12 patients received sham tDCS. A numeric rating scale 
(NRS) for tinnitus intensity (‘How loud is your tinnitus? 
0 = no tinnitus and 10 = as loud as imaginable’) and tin-
nitus annoyance (‘How annoying is your tinnitus? 0 = not 
annoying 10 = suicidal annoying’) was asked before (pre) 
and directly after (post) tDCS stimulation.

http://www.neuroconn.de/
http://www.neuroconn.de/
http://www.neuroconn.de/
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Statistical analysis

Calculations were performed using SPSS software package. 
A repeated measure ANOVA was conducted with stimula-
tion (pre vs. post) as the within-subjects variable and con-
dition (real vs. sham) and device (tACS vs. tDCS) as the 
between-subjects variables for both annoyance and loud-
ness in one model. We used simple contrast analyses as this 
method allows us to test the statistical significance of pre-
dicted specific differences in particular parts of our complex 
design.

Results

The mean tinnitus loudness on a NRS scale was 7.30 
(SD = 1.44) (‘How loud is your tinnitus?’) and the tinnitus 
annoyance on a NRS scale was 7.02 (SD = 1.32) (‘How 
annoying is your tinnitus?’).

Pre- versus post-stimulation

A significant within effect (pre vs. post; F(2, 45) = 11.06, 
p < .001) was obtained on the tinnitus NRS scales. A uni-
variate test of within-subjects revealed that both annoyance 
[F(1, 46) = 21.50, p < .001] as well as loudness [F(1, 46)  
= 14.94, p < .001] changed significantly. It was shown that 
post-stimulation (M = 6.41 for annoyance, M = 6.29 for 
loudness) patients had lower scores on the NRS than pre-
stimulation (M = 7.30 for annoyance, M = 7.02 for loud-
ness). No significant main effect was obtained for condition 
(real vs. sham) and device (tACS vs. tDCS) on both tinnitus 
loudness and tinnitus annoyance. No significant interaction 
effect was found between condition × device on both tin-
nitus loudness and tinnitus annoyance.

Pre- versus post-stimulation dependent on the condition 
(real or sham)

Further analysis indicated that this effect was mediated 
significantly by condition. We found a two-way interaction 
between stimulation (pre vs. post) × condition (real vs. 
sham) [F(2, 45) = 6.00, p < .01]. A univariate test demon-
strated that this was so for both annoyance [F(1, 46) = 4.38, 
p < .05] as well as for loudness [F(1, 46) = 12.19, p < .01]. 
Simple contrasts indicated both annoyance [F(1, 46)  
= 21.17, p < .001] and loudness [F(1, 46) = 25.93, 
p < .001] significantly decreased after real stimulation 
in comparison with pre-stimulation. However, no signifi-
cant effects were obtained when comparing pre- and post-
stimulation in the sham condition for both annoyance and 
loudness. Also no significant effect was obtained when 
comparing real versus sham condition before stimulation. 

However, a significant effect was obtained when compar-
ing the real versus the sham condition post-stimulation for 
both annoyance [F(1, 46) = 4.38, p < .05] as well as loud-
ness [F(1, 46) = 12.19, p < .01], indicating that that real 
stimulation yielded more decrease than sham stimulation. 
No significant effect was demonstrated for stimulation  
(pre vs. post) × device.

Pre- versus post-stimulation dependent on the condition 
(real or sham) as well as on the device (tACS or tDCS)

Most importantly, our analysis yielded a significant three-
way interaction [F(2, 45) = 4.66, p < .05] between stimula-
tion (pre vs. post) × device (tACS vs. tDCS) × condition 
(real vs. sham) for both annoyance [F(1, 46) = 6.10, p < .05] 
and loudness [F(1, 46) = 9.13, p < .01] (see Fig. 1). Simple 
contrast for tDCS revealed that both annoyance [F(1, 46)  
= 29.65, p < .001] and loudness [F(1, 46) = 29.37, p < .001] 
were significantly suppressed during real stimulation but 
not during sham stimulation. For tACS, simple contrasts 
revealed no significant effects, indicating that there were no 
differences on both annoyance as well as loudness during 
real or sham stimulation. To further explore these effects, 
simple contrasts were calculated for both annoyance and 
loudness post-stimulation between tDCS and tACS. The 
analyses revealed that for both annoyance [F(1, 46) = 8.10, 
p < .01] as well loudness [F(1, 46) = 6.12, p < .05], there 
was a significant suppression after tDCS in comparison with 
tACS post-stimulation.

EEG results pre- versus post-tACS

Although tACS does not yield a significant clinical effect, 
it is possible that it induces neurophysiological changes. 
Hence, we look at the power changes at the F3 and F4 elec-
trodes determined by the International 10/20 Electroenceph-
alogram System that overlay the DLPFC. A comparison of 
the power between pre- and post-tACS for, respectively, 
F3 and F4 revealed no significant effect for each frequency 
separately (see Fig. 2). It is, however, possible that due to 
volume conduction, posterior or motor regions might inter-
fere with the findings on F3 and F4. Therefore, also a cur-
rent source density was calculated specifically for left and 
right DLPFC before and after tACS stimulation. However, a 
comparison between, respectively, the left and right DLPFC 
before and after stimulation demonstrated no significant 
effect for each frequency separately (see Fig. 2).

Discussion

We have reported the first side-by-side comparison of tACS 
with tDCS and its effect on the suppression of annoyance 
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and loudness in a sham-controlled fashion. Results indicate 
that a single session of bifrontal tDCS can induced suppres-
sion of both annoyance and loudness, while tACS had no 
effect on both measurements (Table 1).

In regard to tDCS, our results obtained confirm previ-
ous findings that bifrontal tDCS with the anodal electrode 
placed over the right DLPFC and the cathodal electrode 
placed over the left DLPFC can modulate tinnitus annoy-
ance and tinnitus loudness (Vanneste et al. 2010b, 2011a; 
Faber et al. 2011; Plazier et al. 2011). It has been stated 
that the prefrontal cortex is important for the integration 
of sensory and emotional aspects of tinnitus (Jastreboff 
1990; Vanneste et al. 2010a). The DLPFC might regulate 
structures involved in the emotional perception of tinnitus, 
including the anterior cingulate cortex, amygdala and insula 
(Lorenz et al. 2003). TDCS of the DLPFC can reduce tin-
nitus annoyance, interfering with the emotional processing 
of tinnitus (i.e., tinnitus-related distress), analogous to tDCS 
for depression (Fregni et al. 2006a). This can also be sup-
ported to some extent by frontal lobotomy studies in which 
it has been shown that by cutting the connections to the 
prefrontal cortex, the tinnitus loudness does not change but 
rather the emotional ‘distress’ component of tinnitus (Beard 
1965).

However, our results indicate that tACS does not gener-
ate the same results as tDCS both clinically and neurophysi-
ologically. Previous research already demonstrated that 
tDCS affects neural tissue via a sustained modulation of the 
membrane voltage of neurons while tACS most probably 
yields its effect via an up- and down-regulation of certain 
synapses (Zaehle et al. 2010) similar to TMS (Thut and Pas-
cual-Leone 2010). It has been shown that a single session 
of bifrontal tDCS exerts a clear neurophysiological effect in 
tinnitus patients immediately under the electrodes as well as 
at distal areas (Vanneste and De Ridder 2011). Our results 
support the idea that tDCS and tACS might have a different 
working mechanism with a different impact on the stimu-
lated neural tissue.

It has been suggested that tACS is better suited to modu-
late functions that are closely related to brain oscillations 
at specific frequencies (Basar et al. 2001) and is potentially 
capable of interacting with rhythmic neuronal activity and 
has perceptual and behavioral consequences (Zaghi et al. 
2010). Previous research in tinnitus patients indicates that 
the alpha frequency in frontal brain area is an important 
aspect of tinnitus-related distress (Vanneste et al. 2010a). 
Our findings, however, revealed that frontal tACS modulat-
ing the alpha frequency is not a good option to modulate 

Fig. 1  A three-way interaction effect between stimulation × device × condition for both annoyance and loudness
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tinnitus annoyance clinically. It is possible that a different 
frequency setting might obtain better results, although there 
is a good rationale to use the alpha frequency setting for 
frontal neuromodulation. Alternatively, it could also be that 
the current for tACS needs to be higher in comparison with 
tDCS to resort the same results. Further research needs to be 
conducted to test these hypotheses.

In summary, this study explored the effect of tDCS and tACS 
for the treatment of tinnitus. This study provides additional 
insights into the role of DLPFC in tinnitus modulation as well 
as the intersection between tinnitus and affective/attentional 
processing. Our main result was that bifrontal tDCS modu-
lates tinnitus annoyance and tinnitus loudness, while individual 
alpha-modulated tACS does not yield a similar result.
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