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Thalamocortical dysrhythmia detected by machine
learning
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Thalamocortical dysrhythmia (TCD) is a model proposed to explain divergent neurological

disorders. It is characterized by a common oscillatory pattern in which resting-state alpha

activity is replaced by cross-frequency coupling of low- and high-frequency oscillations. We

undertook a data-driven approach using support vector machine learning for analyzing

resting-state electroencephalography oscillatory patterns in patients with Parkinson’s dis-

ease, neuropathic pain, tinnitus, and depression. We show a spectrally equivalent but spa-

tially distinct form of TCD that depends on the specific disorder. However, we also identify

brain areas that are common to the pathology of Parkinson’s disease, pain, tinnitus, and

depression. This study therefore supports the validity of TCD as an oscillatory mechanism

underlying diverse neurological disorders.
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Specific brain oscillatory behavior characterizes resting-state
awake1 and sleep stages2 in an evolutionarily preserved
way3, as well as perceptual4, motor5, and cognitive states6.

Furthermore, some brain disorders might feature a specific
oscillatory signature known as thalamocortical dysrhythmia
(TCD)7–9. The original TCD model suggests a common under-
lying oscillatory mechanism present in specific neurological dis-
orders (i.e., Parkinson’s disease, neuropathic pain, tinnitus) as
well as neuropsychiatric disorders (i.e., depression)9. The original
description of TCD proposes that normal resting-state alpha
activity (8–12 Hz) slows down to theta frequencies (4–8 Hz) in
states of deprived input. This theta activity is further associated
with an increase in surrounding beta/gamma (25–50 Hz) activity,
which results in persistent cross-frequency coupling between
theta and gamma activity8,9. The underlying idea is that depri-
vation leads to a thalamocortical column-specific decrease in
information processing, which permits the slowing of resting-
state thalamocortical activity from alpha to theta frequencies, as
less information needs to be processed10. Decreased input also
results in a reduction of GABAA-mediated lateral inhibition,
inducing gamma activity ( > 30 Hz) surrounding the deafferented
thalamocortical columns8. This gamma band activity surrounding
theta activity is known as the edge effect8,9.

Theta oscillations may reflect negative symptoms (depression,
hearing loss, hypoesthesia, etc.), while gamma-frequency oscilla-
tions conversely reflect positive symptoms (tinnitus, pain, etc.)
8,11. Negative symptoms, linked to slowed alpha or theta activity,
might, therefore, be analogous to what is seen in a sensory-
deprived sleep stage8. The theta wave acts as a long-range carrier
wave12, hypothetically connecting to a theta oscillation-based
memory network. The theta wave then acts as a compensatory
mechanism to pull missing information from memory if it cannot
be obtained from the environment7. Tinnitus, pain, movement,
and mood-related information, reflected by high-frequency
oscillatory activity such as beta and gamma13, can be nested on
this theta wave by means of cross-frequency coupling.

However, the validity of TCD is a matter of ongoing con-
troversy. Recent interest in cross-frequency coupling in physio-
logical states6,14,15 might lead to a wider acceptance of TCD as a
pathological state7. It is, therefore, of interest to verify whether a
purely data-driven approach by means of a support vector
machine (SVM) can reliably detect TCD. We combine source
localized resting-state electroencephalography (EEG) with
machine learning in the present study to look for a neurologic
and neuropsychiatric signature for tinnitus, neuropathic pain,
Parkinson’s disease, and depression described using TCD in the
seminal paper on the model9. We used a region of interest (ROI)-
based approach. The initial choice of ROIs was based on a meta-
analysis of brain areas involved in the pathophysiology of tinni-
tus16. These include tinnitus-specific areas, such as the auditory
cortex, as well as non-specific areas, such as the para-
hippocampus, dorsal anterior and posterior cingulate cortices,
and insular cortex, which are common to tinnitus and the other
pathologies17. This was complemented by spatially specific areas
such as the somatosensory cortex18, motor cortex19, and sub-
genual anterior cingulate cortex20 that have been associated with
neuropathic pain, Parkinson’s disease, and depression, respec-
tively. We further aim to establish whether TCD as an entity can
be diagnosed using resting-state EEG and further subdivided into
its specific clinical entities. Based on theoretical underpinnings7,
we hypothesize that if TCD exists it should be characterized by
spectrally equivalent but spatially distinct forms. Our results show
a spectrally equivalent but spatially distinct form of TCD
depending on the specific neural disorder together with brain
areas that are involved in pain, tinnitus, Parkinson’s disease, and
depression.

Results
Whole-brain frequency analysis. Comparing the power spectra
of patients (i.e., tinnitus, pain, Parkinson’s disease, and depres-
sion) with healthy control subjects showed a significant effect for
tinnitus (F= 4.44, p < 0 .001), pain (F= 7.77, p < 0.001), Parkin-
son’s disease (F= 3.24, p < 0.001), and depression (F= 3.29, p <
0.001). A simple contrast analysis showed a significant increase in
the current density for tinnitus patients in comparison to healthy
control subjects between 2–4 and 14–44 Hz. For pain, in com-
parison to healthy subjects, we see a significant increase between
2–5 and 14–44 Hz in current density and a significant decrease
between 9–10 Hz. For Parkinson’s disease patients and patients
with depression, we found significant increases from 3–8 and
from 3–9 Hz, respectively, in comparison to healthy control
subjects. In addition, a significant increase was identified in
current density between 12–44 Hz for Parkinson’s disease
patients and between 19–41 Hz for patients with depression in
comparison to healthy control subjects. A general comparison
between all patients (i.e., tinnitus, pain, Parkinson’s disease, and
depression) and healthy control subjects showed a significant
effect (F= 5.07, p < 0.001). A simple contrast analysis revealed a
significant increase between 2–5 Hz and between 13–44 Hz. See
Fig. 1 for an overview of these results.

Accuracy and selected cortical areas in each model. Using SVM
learning for tinnitus, we were able to differentiate between tin-
nitus and healthy control subjects with an average 87.71%
(sd= 1.37) accuracy rate in comparison to a random model,
which was only 53.30% accurate (sd= 2.66) (F= 2648.86,
p < 0.001). The true-positive ratio (TPR) was on average 0.82
(sd= 0.02) and the false-positive ratio (FPR) was 0.08 (sd= 0.02).
In comparison to the random model, the TPR was on average
0.47 (sd= 0.02) (F= 3138.04, p < 0.001) and the FPR was 0.53
(sd= 0.03) (F= 5046.92, p < 0.001). The ROC shows a significant
effect (F= 3509.78, p < 0.001), indicating a higher score for the
tinnitus model (M= 0.94, sd= 0.03) in comparison to the ran-
dom model (M= 0.45, sd= 0.03). A significant difference was
also obtained by comparing the κ-statistic (real: M= 0.75, sd=
0.02 vs. random: M=−0.10, sd= 0.01; F= 27993.41, p < 0.001),
mean average error (MAE) (real: M= 0.16, sd= 0.02 vs. random:
M= 0.51, sd= 0.02; F= 3822.82, p < 0.001), and root mean
squared error (RMSE) (real: M= 0.26, sd= 0.02 vs. random:
M= 0.52, sd= 0.02; F= 1307.12, p < 0.001) (Fig. 2, uppermost
“tinnitus” panel). The model selected the left and right auditory
cortices and included the theta, alpha, and gamma-frequency
bands, the left parahippocampus at the gamma-frequency band,
and the right parahippocampus at the theta and gamma-
frequency bands. The model obtained using SVM learning also
included the theta, beta, and gamma-frequency bands for the
dorsal anterior cingulate cortex and the gamma-frequency band
for the subgenual anterior cingulate cortex. In addition, the
posterior cingulate cortex for the theta, beta, and gamma-
frequency bands and the right insula at the theta frequency
contribute to the model (Fig. 3 upper left “tinnitus” panel).

The model obtained using SVM learning for pain was able to
differentiate between pain and healthy controls subjects with an
average 92.53% (sd= 1.59) accuracy rate, in comparison to a
random model which was only 52.74% accurate (sd= 1.79)
(F= 5512.32, p < 0.001). The TPR of the model was on average
0.93 (sd= 0.02) and the FPR was 0.21 (sd= 0.02). In comparison,
the random model TPR was on average 0.53 (sd= 0.02)
(F= 4563.30, p < 0.001) and the FPR was 0.45 (sd= 0.03)
(F= 1206.75, p < 0.001). The ROC shows a significant difference
between the pain model (M= 0.95, sd= 0.01) and the random
model (M= 0.54, sd= 0.02) (F= 6317.48, p < 0.001). A
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significant difference was also obtained comparing the κ-statistic
(real: M= 0.78, sd= 0.02 vs. random: M= 0.07, sd= 0.01;
F= 19779.991, p < 0.001), MAE (real: M= 0.08, sd= 0.02 vs.
random: M= 0.49, sd= 0.02; F= 5771.21, p < 0.001), and RMSE
(real: M= 0.21, sd= 0.02 vs. random: M= 0.51 sd= 0.02;
F= 357.89, p < 0.001) (Fig. 2, the second panel from the top,
“pain”). Using SVM learning, the model obtained includes the left
and right parahippocampus at the gamma-frequency band, the
theta and beta frequency bands for the dorsal anterior cingulate

cortex, and the theta frequency band for the subgenual anterior
cingulate cortex. Also, the left insula for the theta frequency band
and the right insula for the theta and beta frequency bands were
included in the model. The dorsal anterior cingulate cortex was
included for the theta and beta frequency bands. The left
somatosensory cortex was involved for the gamma-frequency
band and the right somatosensory cortex for the theta and alpha
frequency bands. In addition, the theta and beta frequency bands
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Fig. 1 A comparison of the power spectrum of patients (i.e., tinnitus (N= 153), pain (N= 78), PD (N= 31), and depression (N= 15) with healthy control
subjects (N= 264) showed a significant effect for tinnitus (F= 4.44, p < 0.001), pain (F= 7.77, p < 0.001) PD (F= 3.24, p < 0.001), and depression
(F= 3.29, p < 0.001) for specific frequencies (see gray bars in figure). A general comparison between all patients (N= 277) (i.e., tinnitus, pain, PD, and
depression) and healthy control subjects showed a significant effect (F= 5.07, p < 0.001) for specific frequencies (see gray bars in figure). Black whiskers
indicate standard errors
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Fig. 2 Obtained model using support vector machine learning to differentiate between, respectively, tinnitus (N= 153) vs. controls (N= 264), pain
(N= 78) vs. controls (N= 264), Parkinson disease (N= 31) vs. controls (N= 264), and depression (N= 15) vs. controls (N= 264). SVM learning can
differentiate between the disorder and healthy control subjects with an accuracy between 75 and 94% in comparison to a random model. The true-positive
rate (TPR) of the models and the area under the curve (ROC) were significantly higher for the obtained model in comparison to the random model, while
the false-positive rate (FPR) was significantly lower. A significant difference was also identified by comparing the κ-statistic MAE and RMSE, confirming the
strength of the tested model in comparison to the random model. (*indicates a significant effect p < 0.001). Black whiskers indicate standard errorsPlease
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for the posterior cingulate cortex were included in the model
(Fig. 3, upper right “pain” panel).

For Parkinson’s disease, SVM learning obtains a model that
classifies on average 94.34% (sd= 1.81) of the Parkinson patients
correctly in comparison to a random model 46.56% (sd= 2.17)
(F= 5687.61, p < 0.001). The TPR of the Parkinson model was on
average 0.93 (sd= 0.02) and the false-positive rate was 0.11 (sd=
0.01). In comparison to the random model, the TPR was on
average 0.46 (sd= 0.02) (F= 6746.61, p < 0.001) and the FPR was
0.53 (sd= 0.02) (F= 7267.93, p < 0.001). The ROC shows a
significant difference between the Parkinson’s model (M= 0.95,
sd= 0.02) and the random model (M= 0.45, sd= 0.02) (F=
8361.86, p < 0.001). A significant difference was also obtained
comparing the κ-statistic (real: M= 0.83, sd= 0.02 vs. random:
M=−0.05, sd= 0.02; F= 19041.13, p < 0.001), MAE (real: M=
0.07, sd= 0.02 vs. random: M= 0.50, sd= 0.02; F= 3928.08, p <
0.001), and RMSE (real: M= 0.16, sd= 0.02 vs. random: M=
0.52, sd= 0.02; F= 3563.81, p < 0.001) (Fig. 2, the third panel
from the top, “Parkinson”). The model using SVM learning
method is selecting the theta and gamma-frequency bands for the
left and right parahippocampus; the theta, beta, and gamma-
frequency bands for the motor cortex; and the theta, alpha, beta,
and gamma-frequency bands for the dorsal anterior cingulate
cortex. For the subgenual anterior cingulate cortex, the gamma
frequency was selected. In addition, the theta frequency band was
selected for the right insula and the theta, beta, and gamma-
frequency bands for the posterior cingulate cortex (Fig. 3 lower
left “Parkinson” panel).

Our depression model shows it was able to classify on average
75.40% (sd= 1.76) in comparison to a random model at 52.58%
(sd= 1.58) (F= 1699.06, p < 0.001). The TPR of the depression
model (M= 0.75, sd= 0.02) was significant in comparison to the
random model (M= 0.54, sd= 0.01) (F= 1707.00, p < 0.001).
The FPR was on average 0.25 (sd= 0.02) for the depression
model, while for the random model it was on average 0.45 (sd=
0.01) (F= 1286.57, p < 0.001). The ROC shows a significant
difference between the depression model (M= 0.84, sd= 0.02)
and the random model (M= 0.57, sd= 0.03) (F= 1410.76, p <
0.001). A significant difference was also obtained comparing the

κ-statistic (real: M= 0.54, sd= 0.02 vs. random: M= 0.08, sd=
0.02; F= 8427.24, p < 0.001), MAE (real: M= 0.29, sd= 0.02 vs.
random: M= 0.47, sd= 0.02; F= 1193.82, p < 0.001), and RMSE
(real: M= 0.38, sd= 0.03 vs. random: M= 0.56, sd= 0.02; F=
611.02, p < 0.001) (Fig. 2, the second panel from the bottom,
“Depression”). Using SVM learning, the model selected the alpha
frequency band of the left parahippocampus and the theta
frequency band of the subgenual anterior cingulate cortex (Fig. 3
lower right “Depression” panel).

Using the full model (including tinnitus, pain, Parkinson,
depression), 87.60% (sd= 1.21) of the subjects were correctly
classified in comparison to a random model 55.15% (sd= 2.50)
(F= 2733.02, p < 0.001). The TPR of the model (M= 0.87, sd=
0.02) in comparison to a random model (M= 0.50, sd= 0.02)
was higher (F= 5606.06, p < 0.001). The FPR was on average 0.29
(sd= 0.01) for the full model, while for the random model the
average was 0.50 (sd= 0.01) (F= 2236.58, p < 0.001). The ROC
shows a significant difference between the full TCD model (M=
0.89, sd= 0.01) and random model (M= 0.50, sd= 0.01) (F=
9257.55, p < 0.001). A significant difference was also obtained
comparing the κ-statistic (real: M= 0.65, sd= 0.01 vs. random:
M= 0.003, sd= 0.02; F= 1708.83, p < 0.001), MAE (real: M=
0.19, sd= 0.01 vs. random: M= 0.50, sd= 0.01; F= 5184.07, p <
0.001), and RMSE (real: M= 0.32, sd= 0.04 vs. random: M=
0.54, sd= 0.02; F= 461.73, p < 0.001) (Fig. 1, the lowermost
panel, “Full Model”). To differentiate between healthy controls
and TCD (including tinnitus, pain, Parkinson’s, and depression),
the SVM learning model selected the theta, beta, and gamma-
frequency bands for the dorsal anterior cingulate cortex; the theta
frequency band for the subgenual anterior cingulate cortex; and
the gamma-frequency band for the left and right parahippocam-
pus. In addition, the theta and gamma frequencies were selected
for the posterior cingulate cortex and the theta frequency band
was selected for the insula (Fig. 4).

Non-TCD group: Applying the same method to a non-TCD-
related pathology (i.e., obesity) shows only 59.96% (sd= 2.42) of
the subjects were correctly classified in comparison to a random
model 54.95% (sd= 2.31) (n.s.). Additionally, the TPR of the
model (M= 0.52, sd= 0.11) in comparison to a random model

Tinnitus

Parkinson Depression

Pain

Left

Left

Left

Left

Right

Right

Right

Right

dACC

dACC

Mo Mo

PCC

PCC

AUD AUD
INS

INS

INS INS

sgACC

PHC PHC

PCC

So So

dACC

sgACC

sgACC sgACC

PHC

PHC

PHC

PHC PHC

θ β γ

θ α β γ

θ β γ θ β γ

θ γ θ γ θ γ

θ
θ α

θ β γ

θ β

θ α

θ θ

θ β

θ β

θ α γ θ α γ

γ

γ
γ

θ γ

θ

θ β γ

γ γ

Fig. 3 Support vector machine learning differentiates between, respectively, tinnitus (N= 153) vs. controls (N= 264), pain (N= 78) vs. controls (N=
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(M= 0.52, sd= 0.09) did not show a significant difference (n.s.).
The FPR was on average 0.54 (sd= 0.06) for the test model, while
for the random model the average was 0.49 (sd= 0.02) (n.s.). The
ROC did not show a significant difference between the non-TCD
model (M= 0.47, sd= 0.01) and the random model (M= 0.48,
sd= 0.01). No significant difference was demonstrated by
comparing the κ-statistic (real: M= 0.07, sd= 0.05 vs. random:
M= 0.004, sd= 0.06), MAE (real: M= 0.49, sd= 0.04 vs.
random: M= 0.50, sd= 0.01) and RMSE (real: M= .54,
sd= 0.05 vs. random: M= 0.54, sd= 0.03) (see Supplementary
Fig. 2).

Conjunction analysis. A conjunction analysis between Parkin-
son’s disease, neuropathic pain, tinnitus, and depression revealed
a significant effect (Z= 2.15, p < 0.05) for the dorsal anterior
cingulate cortex/midcingulate cortex and parahippocampus for
the beta frequency band. No significant effect was obtained for
the delta, theta, alpha, or gamma-frequency bands. See Fig. 5.

Cross-frequency coupling. A cross-frequency coupling analysis
showed significantly increased nesting of theta–beta (F= 18.11,
p < .001) and theta–gamma (F= 19.74, p < 0.001) for the tinnitus
group in the auditory cortex in comparison to pain, Parkinson’s
disease, depression, and healthy controls. Significantly increased
nesting of theta–beta (F= 20.21, p < 0.001) and theta–gamma
(F= 17.87, p < 0.001) was obtained for the somatosensory cortex
for pain patients in comparison to tinnitus patients, Parkinson’s
disease patients, and patients with depression. For the motor
cortex, a significant increase in nesting of theta–beta (F= 2.58,
p= 0.037) and theta–gamma (F= 2.92, p= 0.021) in patients
with pain or Parkinson’s disease was revealed in comparison to
tinnitus patients, patients with depression, and healthy controls.
For both the subgenual anterior cingulate cortex and the dorsal
anterior cingulate cortex, significantly increased nesting of
theta–beta (F= 18.86, p < 0.001; F= 21.03, p < 0.001) and
theta–gamma (F= 19.51, p < 0.001; F= 20.67, p < 0.001) corre-
lations were found for the tinnitus, pain, Parkinson’s disease, and
depression patients in comparison to healthy controls. See Fig. 6
for an overview.

The cross-correlation between spectral amplitudes at different
frequencies for healthy control subjects as well as for patients with
tinnitus, pain, Parkinson’s disease, and depression as illustrated in
Fig. 7 does not show a significant difference in increased power to
power in theta–beta and theta–gamma correlation between the
healthy control group and the patient groups.

Discussion
The objective of this study is to investigate whether there is
spectral equivalence between different neurological (i.e., tinnitus,
pain, Parkinson’s disease) and neuropsychiatric (i.e., depression)
disorders with spatially distinct forms of TCD. The results of this
study, using a purely data-driven classification by means of SVM
learning, clearly show that the theta, beta, and gamma-frequency
bands are important in differentiating between neuropsychiatric
disorders and healthy control subjects as proposed by and in
confirmation of the TCD model. This purely data-driven
approach also selected spatially distinct brain areas to dis-
criminate between the different clinical TCD entities. For these
spatially distinct brain areas, phase–amplitude cross-frequency
coupling was demonstrated between theta–gamma and
theta–beta oscillations for tinnitus, pain, Parkinson’s disease, and
depression. For the dorsal anterior cingulate and subgenual
anterior cingulate cortices, an increased coupling between
theta–gamma and theta–beta oscillations is identified that is not
related to a specific disorder but probably has a more general role
(Fig. 8). Theta–beta and theta–gamma coupling were, however,
not confirmed when using a power-to-power cross-frequency
coupling analysis as applied in the original TCD model9. How-
ever, more recent research suggests that phase–amplitude cou-
pling more accurately reflects the physiological mechanism for
effective communication in the human brain6.

The data-driven classification method applied to source loca-
lized resting-state EEG in different neurological (i.e., tinnitus,
pain, Parkinson’s disease) and neuropsychiatric (i.e., depression)
disorders identifies a temporal pattern of neural oscillations that
serves as a cortical signature in accordance with the TCD model.
Using SVM learning, the theta, alpha, beta, and gamma-
frequency bands were selected in spatially distinct brain areas.
These findings were further confirmed doing a whole-brain
power spectrum analysis, showing changes in the theta, alpha,
beta, and gamma frequencies in comparison to healthy controls.
Cross-frequency coupling might be important for integration via
low-frequency coherence of distributed, geographically-focal,
high-frequency activity21. In physiological circumstances,
alpha–gamma coupling may be related to perceptual processing
via thalamocortical circuits, whereas theta–gamma processing
might be related to physiological memory related processing7.
Pathological theta–gamma coupling would, therefore, be based on
slowing of alpha (= theta)–gamma coupling22,23. This further
suggests that the theta activity in TCD is actually slowed alpha, as
originally proposed9.

This temporal pattern goes together with a typical spatial
pattern of neural activity that is dependent on the neurological or
neuropsychiatric disorder. While the somatosensory cortex is
important for neuropathic pain, in tinnitus the auditory cortex is
a significant contributor, and in Parkinson’s disease the motor
cortex plays a distinctive role. These findings confirm previous
research and suggest that each disorder has a unique cortical
signature. However, it is incorrect to conclude based on reverse
inference that these patterns of brain activation represent pain,
tinnitus, or Parkinson’s disease, respectively. In addition, our data
demonstrate an increase in theta–beta and theta–gamma coupling
for these specific areas related to the specific disorder. For pain,
we see increased coupling at the somatosensory cortex; for tin-
nitus, we see increased coupling at the auditory cortex; and for
Parkinson’s disease, increased coupling is seen at the motor
cortex. Interestingly, for Parkinson’s disease we also observe
increased coupling in the auditory and somatosensory cortices,
but this does not survive correction for multiple comparisons.
The motor cortex findings of cross-frequency coupling on EEG
are in keeping with recordings from the subthalamic nucleus in
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Fig. 4 Support vector machine learning differentiates between
thalamocortical dysrhythmia disorder (N= 277) including tinnitus, pain,
Parkinson, and depression vs. healthy controls subjects (N= 264). dACC
dorsal anterior cingulate cortex, sgACC subgenual anterior cingulate cortex,
INS insula, PHC parahippocampus, AUD auditory cortex, So somatosensory
cortex, Mo motor cortex, PCC posterior cingulate cortex, θ theta, β beta, γ
gamma
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Parkinson’s disease, which also shows symptoms related to cross-
frequency coupling24.

For depression, the involvement of the subgenual anterior
cingulate cortex is not straightforward, as this area also char-
acterizes the three other disorders in the present study. Con-
vergence of findings across modalities and mood states has
identified the subgenual anterior cingulate cortex as a critical
brain region in emotion, autonomic nervous system processing,
and the pathogenesis of mood disorders25–27. This could explain
why the subgenual anterior cingulate cortex is a contributor to
tinnitus, pain, and Parkinson’s disease. It is known that these
neurological disorders are associated with mood changes. The fact
that our data-driven classification approach identifies the sub-
genual anterior cingulate cortex as an important brain area to
differentiate between healthy controls and specific neurological
and neuropsychiatric disorders suggests that it could indeed be
involved in common aspects of these disorders. However, we also
see a different temporal pattern of neural oscillations for the
subgenual anterior cingulate depending on the disorder. For both
tinnitus and Parkinson’s disease, the gamma wave seems to be
important; for pain and depression, the theta wave is more
prominent.

The commonality between the different neurological and
neuropsychiatric disorders and the dorsal anterior cingulate
cortex is not unexpected. The dorsal anterior cingulate cortex
together with the anterior insula comprises the core of the sal-
ience network and is a key node that overlaps with the psychiatric
and neurological ‘‘common core’’map28. It is a critical hub within
the functional architecture of the brain at the intersection of
cognitive, affective, and somatosensory processing27. Animal
behavioral studies have further demonstrated that anterior cin-
gulate cortex activation is critical for memory processing involved
in long-term negative affective states29. Human studies further

show its involvement in tinnitus loudness30 and distress17,31

processing, pain processing32,33, and executive behavior in Par-
kinson’s disease34. Hence, it makes sense that this particular area
is also involved in tinnitus, pain, Parkinson’s disease, and
depression. Furthermore, theta–gamma coupling within the
dorsal anterior cingulate cortex has been associated with attention
and goal directed behavior35,36.

In this paper, we only look at TCD in the specific neurological
(i.e., tinnitus, pain, Parkinson’s) and neuropsychiatric (i.e.,
depression) disorders suggested in the original paper on TCD9.
Further research has shown that TCD could also be present in
schizophrenia37, migraines38, visual snow39, and chronic back
pain40. Therefore, future research could also look at these addi-
tional pathologies and cross-validate our findings by including
non-TCD-related disorders. An additional weakness of the paper
could be the unequal distribution of the sample sizes of the
specific TCDs included in our analysis. Although there is a
smaller sample size for Parkinson’s disease (n= 31) and major
depression (n= 15), this should not have a major bearing on the
individual accuracies of the model, since each pathology is indi-
vidually compared to a random model and yields approximately
the same accuracy. In addition, comparing a weighted with an
unweighted model for each disorder revealed approximately
similar accuracy rates (see Supplementary Material and Supple-
mentary Fig. 3). Furthermore, the internal validity was confirmed
by a tenfold cross-validation technique for each disorder. The
unequal distribution of the sample sizes could influence the full
model; however, when comparing the expected contribution to
the full model based on the sample size (see Supplementary
Fig. 4) with the actual contribution based on the accuracy of the
model, it is clear that the unequal distribution does not influence
the full model.

dACC

L R

dACC

PHC
PHC

Fig. 5 Conjunction analysis between tinnitus, pain, Parkinson’s, and depression after the subtraction of the healthy controls shows a significant increase in
the dorsal anterior cingulate cortex and parahippocampal area for the beta frequency band. dACC dorsal anterior cingulate cortex, PHC parahippocampus
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In conclusion, the current data-driven approach using machine
learning shows temporal and spatial patterns of activity that serve
as a cortical signature for, respectively, pain, tinnitus, Parkinson’s
disease, and depression. Our data suggest a spectrally equivalent
but spatially distinct form of TCD depending on the specific
neural disorder. However, apart from the disorder-specific spatial
signature, common brain areas that are involved in pain, tinnitus,
Parkinson’s disease, and depression are also identified. Therefore,
this study supports the existence of TCD as a mechanism
underlying diverse neuropsychiatric disorders. However, more

research is needed to cross-validate these findings, including
studies of different neurological and neuropsychiatric disorders.

Methods
Participants. The database for this study consists of 541 subjects (245 women and
296 men; 20–75 years of age, M= 48.43; sd= 12.35): 264 healthy control subjects,
153 tinnitus subjects, 78 subjects with chronic pain, 31 subjects with Parkinson’s
disease, and 15 subjects with major depression. The healthy control group reported
no history of neurological or neuropsychiatric disorders. Tinnitus subjects were
screened by a tinnitus specialist to exclude pulsatile tinnitus, Ménière’s disease,
otosclerosis, and chronic headache. Neurological disorders such as brain tumors
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Fig. 6 Radar plot of presence of cross-frequency coupling in the auditory cortex, somatosensory cortex, motor cortex, subgenual anterior cingulate cortex,
and the dorsal anterior cingulate cortex for theta–beta and theta–gamma coupling using Pearson correlations. An asterisk indicates if the CFC for a specific
disorder is significantly different in comparison to all other disorders and healthy control subjects after Bonferroni correction (p < 0.05). The figure
demonstrates the presence of theta–gamma (red line) and theta–beta (black line) coupling for tinnitus in the auditory cortex (upper left panel), for pain in
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theta–beta oscillations is identified that is not related to the specific neurological/neuropsychiatric disorder, but likely has a more non-specific general role.
y-axis represent Pearson correlation r score
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were also excluded. All tinnitus patients have had tinnitus for more than 1 year. A
pain specialist screened the pain patients for neuropathic pain related to deaf-
ferentation (i.e., peripheral nerve, root, or central tract lesions), and that the
patients had these pain complaints for >1 year. Parkinson’s disease patients were
screened by an experienced neurologist who verified all the patients for the fol-
lowing set of criteria: diagnosis of Parkinson’s disease according to the UK Brain
Bank Criteria, patients in Hoehn & Yahr stage I–III, lack of features suggestive of
atypical Parkinsonism, and lack of cognitive dysfunction as evidenced by the
Montreal Cognitive Assessment test (MoCA) (score ≥ 26). Patients with major
depression for >1 year were screened by an experienced psychiatrist and reported
no history of brain injury or lifetime history of primary psychotic ideation, mania,

or substance abuse. All patients with major depression had a score higher than 27
on the Beck Depression Inventory. See Table 1 for further patient characteristics.

The study was in accordance with the ethical standards of the Helsinki
declaration (1964) and was approved by the institutional ethics committee at
Antwerp University Hospital (UZA OGA85). All participants signed a consent
form. All relevant data are available from the authors on request.

Control non-TCD group. Forty-five obese participants (31 women and 4 men with
a mean age of 49.03, sd= 14.11) were included as a non-TCD control group.
Anthropometric measures for the non-TCD group are reported in supplementary
table 1. Obesity has been associated with brain changes, but as far as we know, has
not been associated with TCD41. Hence, we selected this group as a control
measure to cross-validate our TCD-related disorders model (i.e., tinnitus, pain,
Parkinson’s disease, and depression).

EEG recording. All resting-state EEGs were recorded in the same room for 5 min
at 19 scalp sites of a Tin-electrode cap (ElectroCap, Ohio, United States) using a
Mitsar amplifier (Mitsar EEG-201, St. Petersburg, Russia; http://www.mitsar-
medical.com) and were sent to the WinEEG software version 2.84.44 (Mitsar, St.
Pertersburg, Russia). EEGs were measured in a fully lit room shielded from both
sound and stray electric currents, with participants sitting upright in a comfortable
chair with their eyes closed. The resting-state EEG was sampled with 19 electrodes
in the standard 10–20 international placement (Fp1, Fp2, F7, F3, Fz, F4, F8, T7, C3,
Cz, C4, T8, P7, P3, Pz, P4, P8, O1, O2), referenced to linked ears, and impedances
were maintained below 5 kΩ at all electrodes throughout the EEG recording.
Participants were instructed not to drink alcohol for 24 h prior to EEG recording or
caffeinated beverages on the day of recording to avoid alcohol- or caffeine-induced
changes in the EEG stream42–44. The alertness of participants was checked by
monitoring both slowing of the alpha rhythm and appearance of spindles in the
EEG stream to prevent possible enhancement of the theta power due to drowsiness
during recording. No participants included in the current study showed such EEG
changes during measurements. Data was recorded in the WinEEG software with a
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Fig. 7 Power to power cross-frequency coupling for each disorder (i.e., tinnitus (N= 153), pain (N= 78), PD (N= 31), and depression (N= 15)) and healthy
control subjects (N= 264). This plot represents the cross-correlation between spectral amplitudes at different frequencies (2–44 Hz). No differences were
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Fig. 8 Summary figure. Spatial distribution of theta–beta and theta–gamma
cross-frequency coupling as related to different thalamocortical
dysrhythmia syndromes
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sampling rate of 1024 Hz, a high-pass filter at 0.15 Hz, and a low-pass filter at 200
Hz. The data were then resampled to 128 Hz, band-pass filtered (fast Fourier
transform filter applying a Hanning window) to 2–44 Hz, and imported into the
Eureka! Software45. A careful inspection of artifacts was performed and all episodic
artifacts suggestive of eye blinks, eye movements, jaw tension, teeth clenching, or
body movement were manually removed from the EEG stream. An artifact was
defined as an EEG characteristic that differs from signals generated by activity in
the brain. (1) Some artifacts are known to be in a limited frequency range, e.g.,
above some frequency. These were removed by frequency filtering. (2) Some
artifacts consist of discrete frequencies such as 50 Hz (or 60 Hz for USA) or its
harmonics. These were removed by notch filtering. (3) Some artifacts are limited to
a certain time range, e.g., in the case of eye blinks. These artifacts were recognized
by visual inspection and these time intervals were discarded. (4) Some artifacts
originate from one or a few distinct sources or a limited volume of space so that the
artifact topography is a superposition of characteristic topographies (equivalently,
the artifact is limited to a subspace of the signal space). We removed these artifacts
by determining the characteristic topographies (equivalently, the artifact subspace)
so that the remaining signals do not contain anything from the artifact subspace.
(5) Artifacts and true brain signals that can be assumed to be sufficiently inde-
pendent can be removed by independent component analysis. (6) Some artifacts
are characterized by a particular temporal pattern such as exponential decay. We
removed these artifacts by modeling the artifact and fitting its parameters to the
data and then removing the artifact.

After artifact rejection, a comparison was made between the different groups
(healthy control subjects, tinnitus subjects, subjects with chronic pain, subjects with
Parkinson’s disease, and subjects with major depression) for the average length of
the EEG. This analysis showed no significant differences between the different
groups (F= 0.88, p= 0.48; see Supplementary Fig. 1).

Source localization analysis. Standardized low-resolution brain electromagnetic
tomography (sLORETA, available at http://www.uzh.ch/keyinst/loreta.htm) is a
functional imaging method yielding standardized current density with zero loca-
lization error based on certain electrophysiological and neuroanatomical con-
straints46. sLORETA was utilized to estimate the intracerebral sources generating
the scalp-recorded electrical activity in each of the following eight frequency bands:
delta (2–3.5 Hz), theta (4–7.5 Hz), alpha (8–12 Hz), beta (13–30 Hz), and gamma
(30.5–44 Hz)47. The sLORETA algorithm solves the inverse problem—the com-
putation of images of electric neuronal activity based on extracranial measurements
—by assuming related orientations and strengths of neighboring neuronal sources
that are represented by adjacent voxels. The solution space used in this study and
associated lead field matrix are those implemented in the LORETA-Key software.
This software implements revisited realistic electrode coordinates48 and the lead
field produced by Fuchs et al.49 by applying the boundary element method on the
MNI-152 (Montreal neurological institute, Canada). The sLORETA-key anatomi-
cal template divides and labels the neocortical (including the hippocampus and
ACC) MNI-152 volume in 6239 voxels with a size of 5 × 5 × 5mm, based on
probabilities returned by the Daemon Atlas (Lancaster et al. 2000)50. The co-
registration makes use of the correct translation from the MNI-152 space into the
Talairach and Tournoux space. Anatomical labeling of significant clusters was done
using sLORETA’s built-in toolbox. There are concerns that sLORETA analyses are
disadvantageous in comparison to functional magnetic resonance imaging (MRI)
due to a lower spatial resolution and a restriction to cortical gray matter and
hippocampus51; however, other studies have validated sLORETA by comparing it
with other established localization methods such as structural MRI52, positron
emission tomography53–55, and functional MRI56,57. Further validation of sLOR-
ETA has been based on accepting the localization findings obtained from previous
invasive studies using implanted electrodes for epilepsy58,59 and cognitive ERPs60

as reasonable evidence. Additionally, previous studies have shown accurate loca-
lization of deep brain structures such as the subgenual anterior cingulate cortex53

and the mesial temporal lobe61 using sLORETA.

Region of interest analysis. The log-transformed electric current density was
averaged across all voxels belonging to the regions of interest (ROIs) for the dif-
ferent frequency bands: delta (2–3.5 Hz), theta (4–7.5 Hz), alpha (8–12 Hz), beta
(13–30 Hz), and gamma (30.5–44 Hz). The ROIs in the present study are the left
and right auditory cortex (BA41), the left and right somatosensory cortex (BAs1, 2,
3), the left and right motor cortex (BA4), the left and right parahippocampus
(BA27), the left and right insula (BA13), the dorsal anterior cingulate cortex
(BA24), the subgenual anterior cingulate cortex (BA25), and the posterior cingulate
cortex (BA23). For the dorsal anterior cingulate cortex, the subgenual anterior
cingulate cortex, and the posterior cingulate cortex, we do not differentiate between
left and right due to their proximity to the midline. Due to volume conduction,
laterality is harder to differentiate for areas close to the midline. The auditory
cortex62, somatosensory cortex18, motor cortex19, and subgenual anterior cingulate
cortex20 are areas included in this analyses that have been established in the lit-
erature as spatially specific areas, while the parahippocampus, insula, dorsal
anterior cingulate cortex, and posterior cingulate cortex have been associated to
more general areas in these neural disorders17,63. In addition, we calculated the log-
transformed electric current density over all 6239 voxels for the tinnitus, pain,
Parkinson’s disease, depression, and healthy control subjects for the different fre-
quencies from 2 to 44 Hz.

Model generation. A support vector machine (SVM) can classify complex data
into two classes. The merit of SVMs is to classify data by mapping input vectors
into a high- or infinite-dimensional space with some kernel functions and then
constructing a hyperplane to separate them into two classes with a possible max-
imal margin computed. The margin is defined as the distance from the separating
hyperplane to the nearest training-data point. The trained model of a SVM clas-
sifier can be used to predict to which class an unknown sample belongs. Details on
the basic SVM theory can be found elsewhere64. Here, we used the SVM program
in the data-mining software Weka (Waikato Environment for Knowledge Analysis
version 3.7, developed by the University of Waikato Machine Learning Group,
available at http://www.cs.waikato.ac.nz/ml/weka/)65 to perform all classification
tasks. The Weka software suite contains a library of algorithms that build predictive
models by learning from examples provided in user supplied data sets. We use the
default settings as the running parameters. Our data set included for each subject
the five frequency bands (i.e., delta, theta, alpha, beta, and gamma) for each ROI
(i.e., left and right auditory cortex, the left and right somatosensory cortex, the left
and right motor cortex, the left and right parahippocampus, the left and right
insula, the dorsal anterior cingulate cortex, the subgenual anterior cingulate cortex,
and the posterior cingulate cortex). Thus, the file consisted of the full data set,
which is comprised of the current density for all ROIs for all 541 subjects in the five
frequency bands for the model (i.e., Full model). The analysis was also conducted
separately for 264 tinnitus subjects, 78 subjects with chronic pain, 31 subjects with
Parkinson’s disease, and 15 subjects with major depression, each in comparison to
healthy control subjects. The criterion for correct classification was defined as when
subjects were assigned to the correct group based on the model calculated by the
WEKA software (e.g., for the full model: disorder vs. healthy). We used a linear
logistic regression-based classifier as the classification method (see Supplementary
Material for more information). A tenfold cross-validation was performed on the
full data set. Cross-validation is a technique in which the data set is divided into k
equal portions called folds. The first fold is used to generate a predictive model of
the data set. The data in the remaining k—1 folds are then tested against the model,

Table 1 Patient characteristics

Healthy (N= 264) Tinnitus (N= 153) Pain (N= 78) Parkinson disease (N= 31) Depression (N= 15)

Gender 152/112 79/74 43/35 17/14 5/10
Age 49.51 (12.54) 45.42 (12.30) 47.39 (10.26) 56.62 (12.32) 48.51 (13.23)
Tinnitus

Type Lateralization Tinnitus stress Loudness Mean hearing loss
Pure tone: 61 Unilateral: 44 36.02 (16.32) 5.02 (2.48) 31.26 (9.34)
Narrow band noise: 87 Bilateral: 109

Pain
VAS PVAQ
6.30 (2.01) 45.21 (10.31)

Parkinson disease
PDQ HAM BDI UPDRS PDSS PSS
80.81 (26.34) 8.5 (6.32) 8.47 43.44 (15.53) 74.20 (17.06) 27.22 (7.01)

Depression
BDI
34.21 (5.34)
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yielding measurements of model accuracy. A second model is then generated off
the second fold, and the remaining k—1 folds (which include the fold that created
the first model) are tested against this new model again. Subsequently, after all the
folds have been used to create and test a model, the average of the values of model
accuracy over the k-fold cross-validation is presented as the overall accuracy of the
model. For example, in a tenfold cross-validation technique for 100 people labeled
(disorder vs. healthy), the program takes the 100 labeled data and produces 10
equally sized sets. Each set is further divided into two subgroups: 90 labeled data
that are used for training and ten labeled data are used for testing. For the labeled
group that is used for training, the program maintains the same distribution. So if
out of the 100 people labeled, 60 were healthy subjects and 40 were subjects with a
disorder, it will keep this distribution when it selects 90 subjects for training. That
would be 54 healthy subjects and 36 subjects with a disorder. It also produces a
classifier with an algorithm from 90 labeled data and applies that on the ten testing
data for k1. It does the same computation for each of the nine remaining folds (k2–
k10) and produces nine more classifiers. At the end of a tenfold validation, the
average of the ten classifiers produced from ten equally sized sets is calculated and
represents the averaged cross-validation. The measurements of model accuracy
calculated by the k-fold cross-validation technique include the true-positive ratio
(TPR), false-positive ratio (FPR), RMSE, MAE, and κ-statistic. The TPR was cal-
culated as the ratio of the total number of correctly classified positive instances (in
this case, positive refers to tinnitus patients) over the total number of positive
instances in the testing sample. The RMSE is a measure of how well the machine
learns the model, and it was calculated by taking the square root of the average of
the residuals (errors not explained by the regression equation) over the total sample
size. The MAE is simply the average of residuals over the total sample size. The κ-
statistic compares the model’s observed accuracy with its expected (chance)
accuracy by taking the difference in observed and expected accuracy over 1—
expected accuracy.

Randomization of data. In order to determine significance of the model accuracy
for tinnitus/control, pain/control, Parkinson’s/control, and depression/control
data, averaged model accuracy and statistics were calculated through randomiza-
tion of the data. This was done by taking the same data set used to generate the
tinnitus model and randomly reassigning patient data as either tinnitus (pain,
Parkinson’s, or depression, respectively) or control. This randomized data set was
then used to generate a prediction model and to model accuracy values. This was
done 100 times, and the resulting randomized model accuracy statistics were
averaged across all trials.

Conjunction analysis. We conducted a conjunction analysis with the tinnitus,
pain, Parkinson’s disease, and depression data after subtracting the healthy con-
trols66–69. A conjunction analysis identifies a ‘‘common processing component’’ for
two or more tasks/situations by finding areas activated in independent subtrac-
tions66–69. Friston et al.67 also indicated that although general conjunction analysis
is used in a within-group condition, it can also be applied between groups and was
applied in some recent papers70,71.

Cross-frequency coupling. Theta–beta and theta–gamma coupling (e.g., by
nesting) are proposed to be an effective manner of communication between cor-
tically distant areas6. To verify whether this theta–beta/theta–gamma nesting is
present, nesting was calculated for the auditory cortex, the somatosensory cortex,
the motor cortex, the subgenual anterior cingulate cortex, and the dorsal anterior
cingulate cortex using phase–amplitude cross-frequency coupling. Nesting was
computed as follows: first, the time-series for the x, y, and z components of the
sLORETA current for each ROI was obtained. Next, these were filtered in the theta
(4–7.5 Hz), beta1 (12.5–30 Hz), and gamma (30.5–44 Hz) frequency band-pass
regions. These are the time-series of the electrical current in the three orthogonal
directions in space. In each frequency band and for each ROI, a principal com-
ponent analysis was computed and the first component was retained for the theta
and gamma bands. The Hilbert transform was then computed on the gamma
component and the signal envelope retained. Finally, the Pearson correlation
between the theta component and the envelope of the beta/gamma envelope was
computed for each individual.

Furthermore, we calculated the correlation plot of the power spectrum of each
disorder. This plot was computed by calculating the cross-correlation between
spectral amplitudes at different frequencies. These were obtained by computing the
multitaper spectrogram and using a moving analysis window, and then computing
the correlation coefficient of the two time series, with their means removed. By
performing this computation for a two-dimensional grid of points in space, a two-
dimensional image of spectral correlations was generated in a similar way to what
was suggested in the original TCD paper.

Statistical analysis. To compare the power spectra between the different patient
groups and the healthy control subjects, we applied a multivariate analysis of
variance (MANOVA) with group as the independent variable and the frequency
(2–44 Hz) as the dependent variable. Based on a general significant effect, we
further tried to disentangle the effect between the patient groups and healthy
subjects for each frequency using a univariate analysis of variance (ANOVA).

To compare the different outcome measures (correctly classified, incorrectly
classified, TPR, FPR, ROC, κ-statistic, RMSE, and MAE) of the SVM learning
approach, we applied a univariate ANOVA with the model (test vs. random) as the
independent variable and the outcome measures as the dependent variable. We
applied this method for tinnitus, pain, Parkinson’s disease, depression, and the full
model. To cross-validate our model obtained using SVN learning, we added a non-
TCD group and applied a similar method as above.

For the conjunction analysis, we combined the different independent statistical
analyses (each disorder vs. control) performed in the same cortical space as the
sLORETA images. The two statistical analyses are in the form of sLORETA files
containing z-scores, i.e., standard Gaussian values. We calculated each voxel and
frequency for the conjunction z-score. These probabilities correspond to the
Gaussian distribution.

For cross-frequency coupling, we applied a univariate ANOVA with the
different groups (controls, tinnitus, pain, Parkinson’s disease, and depression) as
the independent variable and coupling as the dependent variable (theta–beta/
theta–gamma coupling). A Bonferroni correction was applied to correct for
multiple comparisons to compare the different groups.

Figures 3, 4, 5, and 8 were generated using MATLAB with a graphical user
interface, called BrainNet Viewer (www.nitrc.org/projects/bnv/)72.

Data availability. The data sets analyzed during the current study are available
from the corresponding author on reasonable request.
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