Rapid #: -11882767

CROSS REF ID:
LENDER:
BORROWER:

TYPE:
JOURNAL TITLE:

USER JOURNAL TITLE:

ARTICLE TITLE:

ARTICLE AUTHOR:
VOLUME:

ISSUE:

MONTH:

YEAR:

PAGES:

ISSN:

OCLC #:

Processed by RapidX:

293351
UUM :: Marriott Library

ITD :: Eugene McDermott Library

Article CC:CCG
Brain connectivity
Brain Connectivity

Evidence for Behaviorally Segregated, Spatiotemporally Overlapping Subnetworks in Phantom
Sound Perception.

7

3

Aug

2017
197-210
2158-0014

5/5/2017 10:46:10 AM

'_ HAPIDILL This material may be protected by copyright law (Title 17 U.S. Code)




BRAIN CONNECTIVITY
Volume 7, Number 3, 2017

© Mary Ann Liebert, Inc.

DOI: 10.1089/brain.2016.0459

Evidence for Behaviorally Segregated,
Spatiotemporally Overlapping Subnetworks
in Phantom Sound Perception

Anusha Mohan,"" Nicole Moreno,"" Jae-Jin Song? Dirk De Ridder® and Sven Vanneste'

Abstract

One of the most intriguing questions in neuroscience is to understand the mechanism of information transfer be-
tween different brain areas. Recently, network theory has gained traction and is at the forefront of providing a
possible explanation to not only the mechanism of information transfer but also in the identification of different
neuropathologies. The perception of a phantom ringing in the ear called tinnitus, similar to other neuropatholo-
gies, has been shown to be accompanied by aberrant functional connectivity between different brain areas.
Although, there have been independent studies showing that specific groups of areas encode individual symp-
toms of tinnitus, there has not been one study to show that tinnitus is the unified percept of distinguishable sub-
networks encoding different behavioral aspects. This study combines resting-state functional connectivity
obtained from the source-localized electroencephalography of 311 tinnitus patients and 264 controls, and a
k-fold cross-validation machine learning algorithm to develop a predictive model that verifies the presence of
behaviorally specific, spatiotemporally overlapping subnetworks in tinnitus. This reorganization is found to be
exclusive to tinnitus, even when compared to physiologically similar disorders such as chronic pain, with
each behavioral symptom having a unique oscillatory signature. This frequency-specific transmission of infor-
mation, called multiplexing, enables different types of information to be carried between two brain regions
through the same anatomical connection. In addition to understanding the efficient compensation mechanism
of the brain in the presence of multisymptom disorders, the exclusivity of the prediction model presents an en-
couraging possibility for an objective neural marker for tinnitus.

Keywords: EEG; functional connectivity; multiplexing; source localization

Introduction

THE STUDY OF functional associations between interact-
ing entities or network connectivity (Strogatz, 2001)
has been rigorously investigated in various domains such
as social (Strogatz, 2001), power supply (Albert et al.,
2004), internet (Cohen et al., 2000, 2001), genetic (Barabasi
et al., 2011; Goh et al., 2007), and brain networks (Bullmore
and Sporns, 2009). Particular to brain networks, there
has been an increased interest in understanding basic func-
tions like development and learning (Papo et al., 2014),
as well as to characterize changes in the structural and
functional wiring patterns between different brain areas
in the presence of a pathology (Fornito et al., 2015). The

network connectivity between different brain regions can
be calculated as the coherence of the time series between
the two areas (Pascual-Marqui, 2002; Pascual-Marqui et al.,
2011) showing ‘‘communication through coherence” (Fries,
2005, 2015).

It has been suggested that brain networks assume a very
cost-effective and efficient small-world topology, which
facilitates segregation of brain areas into functionally sep-
arable modules and their integration over long distances
by means of highly specialized regions called hubs (Bull-
more and Sporns, 2009, 2012; Meunier et al., 2009). These
functionally separable modules are found to spatially over-
lap given that different functional modules sometimes
share common brain areas (Meunier et al., 2010; Yang and
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Leskovec, 2014). In addition, the same brain area may also
be responsible for different tasks, facilitating processing
of multimodal input at each location (Wu et al., 2011).
Although aberration from small-world topology has been
reported in the presence of a neuropathology (Agosta et al.,
2013; Olde Dubbelink et al., 2014; Skidmore et al., 2011;
Stam et al., 2009), the concept of functional modularity
seems to be retained (Bassett et al., 2008), possibly driving
an undesired efficiency in the disease network.

Tinnitus is the continuous phantom perception of a ringing
or buzzing sound (Axelsson and Ringdahl, 1989; Jastreboff,
1990; Shargorodsky et al., 2010). The tinnitus network is
characterized by an undesirable functional reorganization
between auditory and nonauditory brain regions (Mohan
et al., 2016a,b). In addition, the tinnitus network consists
of a resilient core and a pliable periphery intertwined by
overlapping subnetworks working in different oscillatory
bands (Mohan et al., 2016¢). In our previous work, we
showed that although network reorganization in tinnitus is
frequency band specific (Mohan et al., 2016a), these net-
works have overlapping brain areas across the different fre-
quency bands (Mohan et al., 2016¢). Furthermore, there
also exists an evidence of networks of regions distinctly
encoding the different behavioral aspects such as loudness
(De Ridder et al., 2015; Vanneste and De Ridder, 2011), dis-
tress (Ueyama et al., 2013; Vanneste and De Ridder, 2011;
Vanneste et al., 2010), and memory of the sensory deafferen-
tation (De Ridder et al., 2013; Sedley et al., 2015). These
subnetworks are identified in specific oscillatory bands,
that is, the loudness network in the gamma frequency band
(De Ridder et al., 2015), the distress network in the alpha
and beta bands (Vanneste and De Ridder, 2011; Vanneste
et al., 2010), and the memory of the deafferentation in the
theta and gamma bands (De Ridder and Vanneste, 2014;
De Ridder et al., 2013). These findings bring us to the theo-
retical model for tinnitus proposed by De Ridder and co-
workers (2014b), which hypothesizes tinnitus as the unified
percept of multiple, segregated behavioral symptoms
encoded in multiple, spatially, and temporally overlapping
subnetworks.

This evidence for temporally overlapping functional mod-
ules and neural signatures of behavioral correlates only al-
ludes to the theoretical model for tinnitus. That is, there is
no study that we are aware of, which combines the concept
of overlapping networks with neural signature of behavioral
correlates. To demonstrate this, the current study makes use
of both resting-state functional connectivity and a machine
learning algorithm to create a model that can discriminate
the neuropathology, in this case tinnitus, from a control pop-
ulation. Machine learning algorithms have been used in com-
bination with pathological changes in the cortical activity
(Hu and Iannetti, 2016; Wager et al., 2013) and network con-
nectivity (Chong et al., 2016; Eskildsen et al., 2015; Plitt
et al., 2015), with the aim to extract distinct features from
the disease network that can uniquely characterize the disor-
der. Although this technique helps in accurately discriminat-
ing a disorder from a control group, some researchers suggest
that the model may fail when tested against disorders that
show similar patterns of a neural activity or connectivity
(Hu and Iannetti, 2016). For example, tinnitus has been sug-
gested to resemble chronic pain owing to the similar etiology
(i.e., deafferentation) (Folmer et al., 2001; Tonndorf, 1987).
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In addition, it is suggested that tinnitus and chronic pain
share, to a certain extent, similar brain networks that encode,
for example, disorder-related distress (De Ridder et al.,
2011a). However, the difference in the two disorders lies
in the pathways that carry the two percepts. Pain has been
identified by very specific nociceptive pathways that have
not been identified in tinnitus yet (De Ridder et al., 2011a).

Hence, we hypothesize that the individual connections
that help discriminate tinnitus from controls will be ex-
clusive to tinnitus and will cluster into distinct groups of
connections that correlate with a behavioral symptom. Fur-
thermore, we hypothesize that these groups of connections
will lie in specific oscillatory bands, yet have overlapping
connections between brain areas across different groups.
Thus, we expect that the behavioral correlate will have a neu-
ral oscillatory signature even when the connections between
those brain areas possibly overlap across different subnet-
works. Through this study, we thus try to provide empirical
evidence for a disorder-specific reorganization of the brain as
spatially and temporally overlapping subnetworks that be-
haviorally segregate into separable modules. We also try to
establish that although this reorganization is specific to tinni-
tus, it is possible to understand the brain’s coping mechanism
to a disorder, from a network reorganization perspective.
Furthermore, if the model is exclusive to tinnitus well
above chance, then we also have a potential clinical diagnos-
tic tool for tinnitus that can discriminate tinnitus from phys-
iologically similar pathologies.

Materials and Methods
Subject groups

Tinnitus group. The tinnitus group consisted of 311 par-
ticipants (M =50.63 years, standard deviation [SD]=13.67
years; 213 males and 98 females), the onset of whose percept
occurred at least a year before data collection. Individuals
having pulsatile tinnitus, Méniere’s disease, otosclerosis,
chronic headache, neurological disorders (such as brain tu-
mors), and those being treated for mental disorders were ex-
cluded from the study. The qualitative aspects of tinnitus that
were recorded included location (unilateral [N=114] or bi-
lateral [N=197]) and type (pure tone [N=118] or noise
like [N=193]). Pure-tone audiometric thresholds were col-
lected at 0.125, 0.25, 0.5, 1, 2, 3, 4, 6, and 8 kHz as recom-
mended by the British Society of Audiology. Further
diagnostic measurements included identifying the pitch and
loudness of the tinnitus on the side with the strongest sense
of the tinnitus percept. This was done by presenting a
1kHz pure tone, 10 dB above the patient’s hearing threshold
at that frequency, in the ear contralateral to that of the tinni-
tus percept. The pitch of tinnitus was determined by adjust-
ing the frequency of the pure tone until the patient matched it
to the pitch of the percept. The intensity of the pure tone was
changed to determine the loudness of the percept. Tinnitus
loudness level (dB SL) (M=7.85dB SL, SD=8.78) was
then calculated by subtracting the absolute loudness level
from the audiometric threshold at the tinnitus frequency
(M=5143Hz, SD=3183) (Meeus et al., 2010, 2011). A
visual analogue scale for loudness (VAS) (‘“‘How loud is
your tinnitus?”’: 0=no tinnitus and 10=as loud as imagin-
able) was assessed. The mean VAS for loudness was 5.31
(SD=2.56). Also, the Tinnitus Questionnaire (TQ) (Meeus
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et al., 2007) was assessed that measures a broad spectrum of
tinnitus-related psychological complaints. The global TQ
score can be computed to measure the general level of psy-
chological and psychosomatic distress. The mean score on
the TQ was 36.45 (SD=17.32). The depression and anxiety
were evaluated using the Hospital Anxiety and Depression
Scale. The mean score on the depression scale was 6.50
(SD=4.06) and the mean score on the anxiety scale was
6.52 (SD=3.48).

Control group. The healthy control group consisted of
264 participants (M=49.78 years; SD=14.74; 154 males
and 110 females). Individuals with psychiatric and neurolog-
ical illness, a history of psychiatric disorders and drug/alco-
hol abuse, records of head injury that resulted in a loss of
consciousness, seizures, headaches, and physical disability
were excluded from the study. No audiometric testing was
done on the individuals in the control group.

Neuropathic pain group. The group consisting of patients
suffering from neuropathic pain comprised 78 participants
(M=5241 years; SD=11.52; 45 males and 33 females).
The term ‘‘Neuropathic pain,” related to deafferentation,
that is, peripheral nerve, root or central tract lesions, as
used in this study, is an umbrella term that encompasses in-
dividuals suffering from chronic pain. These patients suf-
fered from these pain complaints for more than 1 year. A
numeric rating scale for pain (““How much pain do you
have?”’: O=no pain and 10=as painful as imaginable)
assessed the perceived general pain. General pain was de-
fined as a global pain score experienced during the past
week. The mean pain score on the numeric rating scale
was 8.15 (SD=2.98). The Pain Vigilance and Awareness
Questionnaire (PVAQ) was also assessed. The PVAQ mea-
sures the preoccupation with or attention to pain and pain
changes, and is associated with pain-related fear and per-
ceived pain severity (Roelofs et al., 2003). It consists of
two separable factors that measure (1) attention to pain and
(2) attention to changes in pain (Roelofs et al., 2003). For
the PVAQ, the baseline score for attention to pain was
13.60 (SD=4.21) and for attention to changes in pain was
17.57 (SD=3.98).

Tinnitus group for validation of exclusivity. An additional
group of 53 tinnitus patients (M=48.91 years, SD=13.02
years; 26 males and 27 females) was collected to test the
tinnitus models. Fifteen patients had unilateral tinnitus
and 34 had bilateral tinnitus. Twenty-one patients had
pure-tone tinnitus, while 32 reported to have noise-like
tinnitus. The average tinnitus loudness level (dB SL) was
6.24dB SL (SD=6.02) and the tinnitus frequency was
4845Hz (SD=2071). The mean VAS for loudness was
6.04 (SD=3.09). The mean score on the TQ was 40.91
(SD=20.75).

Data collection and preprocessing

Data collection. The data were collected under the ap-
proval of IRB UZA OGA&8S. All patients gave an informed
consent (as in accordance with the declaration of Helsinki
and approved by the local ethics committee at Antwerp
University Hospital). Continuous resting-state electroen-
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cephalography (EEG) was recorded for 5 min from partici-
pants in all three groups (sampling rate=500Hz, band
passed=0.15-200Hz). Subjects were seated upright on a
comfortable chair in a fully lit room and were instructed to
keep their eyes closed. The EEGs were sampled using
Mistar-201 amplifiers (NovaTech; www.novatecheeg.com/)
with 19 electrodes arranged in the International 10-20
standard placement (Fp1, Fp2, F7, F3, Fz, F4, F§, T7, C3, Cz,
C4, T8, P7, P3, Pz, P4, P8, O1, and O2). The electrodes were
referenced to digitally linked ears and the impedances were
kept under 5kQ. Off-line analyses included resampling the
data at 128 Hz and filtering using a 2-44 Hz band-pass filter.
These data were then exported into Eureka! software (Con-
gedo, 2002) where it was plotted and manually inspected
for episodic artifacts (including eye blinks, eye movement,
teeth clenching, body movement, and electrocardiography
[ECG]), which were subsequently removed from the EEG.
Average Fourier cross-spectral matrices were then computed
for the eight frequency bands previously researched in tinnitus:
Delta (2-3.5 Hz), Theta (4-7.5 Hz), Alphal (8-10 Hz), Alpha2
(10-12Hz), Betal (13-18Hz), Beta2 (18.5-21Hz), Beta3
(21.5-20Hz), and Gamma (30.5-44 Hz).

Data preprocessing. Source reconstruction was generated
by estimating the intracerebral electrical sources through stan-
dardized low-resolution brain electromagnetic tomography
[SLORETA; Pascual-Marqui (2002)]. As a standard practice
before the execution of the SLORETA algorithm, a common
average reference transformation was performed on the data
(Pascual-Marqui, 2002). sSLORETA differs from other source
localization algorithms since it does not assume a predefined
number of active sources, while computing neuronal activity
in current density (A/m?). The solution space and the associ-
ated lead field matrix used in the study were those that were
implemented using the LORETA-Key software (available at
www.uzh.ch/keyinst/loreta.htm). The neocortical (including
the hippocampal and anterior cingulate cortex) MNI-152
volume was divided and labeled according to the sSLORETA-
Key anatomical template based on probabilities returned by
the Deamon Atlas (Lancaster et al., 2000) on a total of 6239
voxels (5 mm’ each).

Lagged phase coherence. The lagged-phase coherence
has been interpreted as contributing to source activity by
cross talk between brain regions (Congedo et al., 2010). In
another way, if the oscillations of two sources are coherent
with phase lag, this cross talk could be interpreted as axonal
transmission of shared information. This signal can be
decomposed by the discrete Fourier transformation into a fi-
nite series of sine and cosine waves (carrier out-of-phase and
in-phase waves, which compose the real and imaginary por-
tion of the Fourier decomposition) at the Fourier frequencies
(Bloomfield, 2000). Lag of cosine waves is inversely propor-
tional (with respect to sine counterparts) to their frequency.
Pascual-Marqui defined lagged-phase coherence and also de-
scribed the significance thresholds for given set of lagged-
phase coherence values according to asymptotic results
(Pascual-Marqui et al., 2011). In this study, the amount of
lagged-phase coherence between interacting regions repre-
sents the connectivity strength between pairwise combina-
tions of 84 Brodmann areas. The 84 Brodmann areas used
in this study are defined in Table 1.
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TABLE 1. BRODMANN AREAS AND ABBREVIATIONS
USED IN THE STUDY

Brodmann

areas Abbreviation ~ Name of the Brodmann area

BAO1 S1 Primary Somatosensory Cortex

BAO2 S2 Secondary Somatosensory
Cortex

BAO3 S3 Tertiary Somatosensory Cortex

BAO4 Ml Primary Motor Cortex

BAO5 SPS Superior Parietal Sulcus

BAO6 SMA Supplementary Motor Area

BAO7 SPG Superior Parietal Gyrus

BAO8 Pre-SMA Pre-supplementary Motor Area

BAO9 DLPFC Dorsolateral Pre-frontal Cortex

BA10 FPC Fronto-Parietal Cortex

BAI1 OFC Orbital Frontal Cortex

BA13 Insula Insula

BA17 V1 Primary Visual Cortex

BA18 V2 Secondary Visual Cortex

BAI9 Cuneus Cuneus

BA20 ITG Inferior Temporal Gyrus

BA21 MTG Medial Temporal Gyrus

BA22 STG Superior Temporal Gyrus

BA23 PCC1 Posterior Cingulate Cortex1

BA24 dACC Dorsal Anterior Cingulate
Cortex

BA25 sgACC Subgenual Anterior Cingulate
Cortex

BA27 PHC1 Parahippocampal Gyrusl

BA28 HIP1 Hippocampal Areal

BA29 RSC1 Retrosplenial Cortex1

BA30 RSC2 Retrosplenial Cortex2

BA31 PCC2 Posterior Cingulate Cortex2

BA32 prACC Pregenual Anterior Cingulate
Cortex

BA33 rACC Rostral Anterior Cingulate
Cortex

BA34 HIP Hippocampus

BA35 HIP2 Hippocampal Area2

BA36 PHC2 Parahippocampal Gyrus2

BA37 OTC Occipital-Temporal Cortex

BA38 TP Temporal Pole

BA39 AG Angular Gyrus

BA40 IPS Intraparietal Sulcus

BA41 Al Primary Auditory Cortex

BA42 A2 Secondary Auditory Cortex

BA43 PCG Post-central Gyrus

BA44 OPCG Opercular Part of Inferior
Frontal Gyrus

BA45 IFG Inferior Frontal Gyrus

BA46 MPEC Medial Prefrontal Cortex

BA47 VLPEFC Ventrolateral Prefrontal Cortex

Model generation

Tenfold cross validation. The pairwise connectivity
strengths (weights) in the different frequency bands were fur-
ther organized into a file that could be read by the data-
mining software Weka (University of Waikato Machine
Learning Group, available at www.cs.waikato.ac.nz/ml/
weka). Thus, the file consisted of the full dataset, which
comprised the pairwise connectivity weights of 311 tinnitus
and 264 control participants between 84 Brodmann areas in
the 8 frequency bands. Using a simple logistics filter, a 2—10-
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fold cross-validation was performed on the full dataset to
generate a learning curve through the different models gen-
erated to classify the instances with tinnitus. From these
different models, the most important contributing connec-
tions, which contrast the tinnitus from control networks,
were extracted. Cross-validation is a technique in which the
data set is divided into k equal portions called folds. The first
fold is used to generate a predictive model of the dataset. The
data in the remaining k — 1-folds are then tested against the
model yielding measurements of model accuracy. A second
model is then generated off the second fold and the
remaining k — 1-folds (which include the fold that created
the first model) are tested against this new model again.
Subsequently, after all the folds have been used to create and
test a model, the average of the values of model accuracy
over the k-fold cross-validation is presented as the overall
accuracy of the model. For example, in a 10-fold cross-
validation technique, k; would consist of 10% of the entire
dataset to generate the first model, and each of the nine
remaining folds (k,—ko) is used as test sets. At the end of a
10-fold validation, a total of 90 values of model accuracy
would be averaged together to obtain the overall accuracy of
the model.

The measurements of model accuracy calculated by the k-
fold cross-validation technique include the number of cor-
rectly classified cases, number of incorrectly classified
cases, true-positive ratio, root mean squared error (RMSE),
mean average error (MAE), and k-statistic. The true-positive
ratio was calculated as the ratio of the total number of cor-
rectly classified positive instances (in this case, positive re-
fers to tinnitus patients) over the total number of positive
instances in the testing sample. RMSE is a measure of how
well the model is learned by the machine and was calculated
by taking the square root of the average of the residuals (er-
rors not explained by the regression equation) over the total
sample size. The mean average error (MAE) is simply the
average of residuals over the total sample size. The x-
statistic compares the model’s observed accuracy with its
expected (chance) accuracy by taking the difference in ob-
served and expected accuracy over one minus the expected
accuracy (1—expected accuracy).

Randomization of data. To determine significance of the
model accuracy for the tinnitus/control model, measure-
ments of model accuracy were averaged over 20 iterations
of randomized assignment of patient data as either tinnitus
or control. The randomized dataset was then used to generate
a prediction model and model accuracy values, which were
averaged across the 20 trials. The number of records assigned
to tinnitus (n=311) and controls (n=264) was kept constant
across all iterations to minimize variance compared to the
original model.

Validation of exclusivity. Using the tinnitus model gener-
ated by the 10-fold cross-validation technique in Weka, an
additional test set consisting of network connectivity
strengths of the functional networks derived from 78 neuro-
pathic pain patients and 53 tinnitus patients was validated.
Similar to the cross-validation technique used for creating
the tinnitus model, this dataset was divided into 10-folds
where each fold of data was tested against the previously gen-
erated tinnitus model. The resulting measurement of model
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accuracy was calculated on the tinnitus/pain model as men-
tioned above. To test the significance of the tinnitus/pain
model, the measurements of model accuracy were averaged
over 20 iterations of randomly assigning patients to either
the tinnitus group or the neuropathic pain group. The number
of patients assigned to the tinnitus group n=>53) and the pain
group (n="78) was maintained during the randomization pro-
cess to minimize variance with respect to the original model.

Statistical test

On obtaining the averaged measurements of model accu-
racy from the tinnitus/control, tinnitus/pain, and the random-
izations, a chi-square test was performed to determine the
significance of the tinnitus/control and the tinnitus/pain mod-
els against the random models. The 7> values were calculated
using the observed values of number of correctly and incor-
rectly classified cases from the 10-fold cross-validation re-
sults of the tinnitus/control and tinnitus/pain models and
the expected values of number of correctly and incorrectly
classified cases from the corresponding random models.

A four-factor principal component analysis (PCA) was
conducted between the tinnitus contributing connections
and behavioral measures collected using IBM SPSS 22 soft-
ware. This factor analysis was then overlaid on the original
tinnitus model to determine which clusters of connections
demonstrate significant correlation with specific behavioral
measures. In addition to the original factor analysis, partial
correlation analysis was performed on the significant behav-
ioral measures with each factor, while controlling for behav-
ioral measures that showed a significant correlation with the
measure in question.

Results
Tinnitus model

The tinnitus model generation using the cross-validation
technique resulted in identifying a set of 65 connections that
uniquely differentiate the functional networks of the tinnitus
and control groups. These contributing connections span
across the eight frequency bands and two hemispheres. All
models generated using 2—10-folds comprised the same 65
contributing connections and resulted in the same contributing
values (ff values) and values of model accuracy (Fig. 1). True-
positive discrimination accuracy ranged from 0.82 (2-folds) to
0.88 (6-, 9-, and 10-folds). RMSE was confined to a range be-
tween 0.31 (6-, 7-, 9-, and 10-folds) and 0.35 (2-folds).
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Due to the increased statistical significance of the 10-fold
cross-validation over a 2-fold cross-validation, as reported in
previous research (Lemm et al., 2011), the remainder of this
study will report the findings from the tinnitus model gener-
ated using the 10-fold cross-validation. The generated tinni-
tus model was fairly accurate at distinguishing between
tinnitus and control patients with the percentage of cor-
rectly classified cases=87.70%, percentage of incorrectly
classified cases=12.35%, k-statistic=0.75, MAE=0.20, and
RMSE=0.31 (Fig. 2).

Randomization results

Randomization of the tinnitus/control model yielded a
model where the percentage of correctly classified cases=
52.41%, percentage of incorrectly classified cases =47.60%,
K-statistic=—0.002, MAE=0.50, and RMSE=0.51. Ran-
domization of the tinnitus/control data demonstrated that
the tinnitus prediction model was significant when compared
to the averaged randomized prediction model (y*=286.35,
p<0.001) (Fig. 2).

Connections of importance

The 65 connections that discriminate the tinnitus from the
control are named the connections of importance. These con-
nections span into two large clusters with more than five con-
nections, five smaller clusters with two to five connections,
and six single-connection clusters that were not grouped to-
gether by brain hemisphere or oscillatory frequency bands
(Fig. 3).

Behavioral correlates

PCA of the contribution of each of the connections of im-
portance (ff values) from the tinnitus model generated and
the behavioral data collected from tinnitus participants dem-
onstrated a high correlation between factors and frequency
bands for contributing connections (Table 2). Factor 1 com-
prised every contributing connection in theta, betal, beta2,
beta3, and gamma frequency bands along with several
alphal contributing connections that overlap with Factor 4
and alpha2 contributing connections that overlap with Factor
2. The rest of the contributing connections in Factor 2 are
present in the alpha2 band, while the remaining contributing
connections in Factor 4 are present in the alphal band. All
the contributing connections in Factor 3 belong to the delta
band. A more detailed description of the connections in
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(black line), betal (yellow line), beta2 (orange line), beta3 (purple line), and gamma (blue line). Implicated Brodmann
areas were also differentiated based on location on either the right (white circle) or left (black circle) hemispheres. Color
images available online at www.liebertpub.com/brain
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TABLE 2. CONTRIBUTING CONNECTIONS FROM TINNITUS PREDICTION MODEL

Component
Frequency
Connection band b-value Factor 1 Factor 2 Factor 3 Factor 4
Right S3-Right M1 Gamma 2.05 0.90 0.15 0.14 0.25
Left V1-Left V2 Gamma —1.72 0.87 0.15 0.16 0.16
Left OTC-Left AG Gamma —0.38 0.87 0.14 0.16 0.22
Left S1-Left S3 Gamma 0.75 0.85 0.09 0.04 0.30
Left S1-Left M1 Gamma 1.20 0.84 0.08 0.03 0.30
Right DLPFC-Right FPC Beta2 —-0.29 0.84 0.14 0.19 0.15
Right PHC1-Right PHC2 Gamma —-0.7 0.82 0.16 0.18 0.11
Left HIP1-Left HIP Gamma —-0.41 0.81 0.13 0.20 0.07
Left S1-Right DLPFC Beta2 2.4 0.81 0.24 0.37 0.11
Left RSC1-Left HIP Gamma —1.53 0.80 0.09 0.12 —0.03
Right Pre-SMA-Right PHC1 Betal 1.68 0.79 0.29 0.30 0.15
Right DLPFC-Right FPC Beta3 —0.54 0.78 0.05 0.10 0.26
Left S1-Left S3 Betal 0.34 0.76 0.25 0.29 0.11
Right M1-Right Pre-SMA Gamma —0.91 0.75 0.07 —0.03 0.23
Left FPC-Right PHC2 Betal 1.83 0.75 0.14 0.17 0.12
Left Insula-Left STG Beta2 —0.84 0.73 0.23 0.35 0.13
Left prACC-Left rACC Beta2 -0.73 0.73 0.16 0.25 0.14
Right DLPFC-Right IFG Alphal 0.23 0.66 0.13 0.09 0.54
Left M1-Left V1 Betal —-0.93 0.66 0.16 0.37 0.11
Left S1-Left S2 Beta2 0.32 0.63 0.23 0.33 0.19
Left prACC-Right HIP Theta 2.7 0.63 0.12 0.29 0.20
Right RSC1-Right prACC Gamma 1.84 0.59 0.04 0.03 —0.13
Left OFC-Left MPFC Alpha2 0.28 0.59 0.57 0.23 0.04
Right SMA-Right V1 Alpha2 -0.33 -0.01 0.90 0.05 0.08
Right SMA-Right RSC2 Alpha2 -0.52 —0.05 0.87 —-0.02 0.12
Right AG-Right Al Alpha2 -0.19 —0.04 0.84 —0.02 0.13
Left SPG-Right Cuneus Alpha2 -0.32 0.17 0.83 0.06 0.08
Left PHC1-Right A2 Alpha2 0.45 0.26 0.83 0.17 0.11
Left S1-Left Al Alpha2 -0.21 0.10 0.82 0.02 0.12
Right V2-Right Cuneus Alpha2 0.1 0.00 0.80 0.04 0.01
Left V1-Left V2 Alpha2 0.16 —0.01 0.80 0.05 0.01
Left S2-Right SPS Alpha2 —-0.41 0.36 0.76 0.12 0.15
Right OFC-Right A2 Alpha2 0.46 0.27 0.76 0.19 0.05
Right STG-Right A2 Alpha2 0.32 0.37 0.76 0.06 0.15
Left OFC-Right ITG Alpha2 0.71 0.34 0.73 0.17 0.01
Right S1-Right S3 Alpha2 0.1 0.05 0.72 -0.05 0.22
Right OFC-Right dACC Alpha2 —0.46 0.41 0.69 0.15 0.11
Right TP-Right IFG Alpha2 —-0.27 0.49 0.66 0.19 0.17
Right TP-Right VLPFC Alpha2 -0.17 0.51 0.63 0.20 0.15
Left OFC-Right MPFC Alpha2 0.64 0.57 0.61 0.23 0.07
Left HIP-Right DLPFC Alpha2 0.76 0.59 0.61 0.28 0.10
Left PHC2-Right VLPFC Delta 1.57 0.18 0.07 0.86 —-0.03
Left PCC2-Right IPCG Delta —1.51 0.06 0.07 0.84 0.09
Left HIP2-Left PHC2 Delta —-0.8 0.28 0.13 0.83 —0.03
Right HIP1-Right rACC Delta 1.51 0.07 0.03 0.81 0.00
Right prACC-Right Al Delta 1.83 0.14 0.010 0.80 —0.02
Left PCC1-Right sgACC Delta 4.1 0.32 0.15 0.79 —-0.02
Left Cuneus—Left PHC1 Delta 1.5 0.18 0.03 0.79 0.04
Left Pre-SMA-Right MPFC Delta —1.46 0.01 0.01 0.78 0.05
Left ITG-Left MTG Delta 0.75 0.02 0.09 0.77 0.02
Left TP-Left IFG Delta —1.32 0.33 0.13 0.76 —0.01
Left HIP1-Left HIP Delta —1.28 0.25 0.13 0.74 —0.05
Left RSC2-Left OTC Delta 1.12 0.15 —0.01 0.72 0.01
Left PCG-Right Cuneus Delta —-1.95 0.22 0.09 0.71 —0.01
Right S2-Right S3 Delta -0.33 0.13 0.04 0.69 0.01
Left MPFC—-Left VLPFC Delta 0.51 0.03 0.10 0.67 —0.02
Left S2-Left S3 Delta —-0.23 0.25 0.03 0.63 0.01
Right Cuneus-Right PHC1 Delta 1.92 0.16 —0.03 0.62 0.08
Left Pre-SMA-Left DLPFC Delta —-0.21 0.05 0.09 0.58 0.03
Right SMA-Right V1 Alphal —0.38 0.15 0.18 —0.03 0.86
Left OFC-Right PHC2 Alphal 0.67 0.43 0.11 —0.02 0.77
Right S1-Right S3 Alphal 0.09 0.32 0.21 0.01 0.76
Right S3-Right IPS Alphal —0.12 0.24 0.19 —0.02 0.76
Left OTC-Left AG Alphal —0.28 0.22 0.21 0.02 0.71
Left prACC-Right HIP Alphal 0.65 0.33 0.16 0.05 0.68

Bold values denote significant contribution of the connections in that particular factor.
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importance and their contribution to each factor is given in
Table 2 and illustrated in Figure 4.

Factor 1 was significantly correlated with depression
(r=0.10, p=0.048) (Fig. 5A). Factor 2 showed significant
correlation with age (r=0.23, p<0.001), duration of per-
cept (r=—0.14, p=0.008), loudness of percept (r=—0.12,
p=0.017), and mean hearing loss (MHL) (r=-0.25,
p=0.002) (Fig. 5B). A significant correlation was observed
between Factor 3 and distress, that is, TQ (r=-0.15,
p=0.007) (Fig. 5C). Factor 4 showed a significant correla-
tion with age (r=0.16, p=0.003) and MHL (r=0.22,
p=0.006) (Fig. 5D). From the results of the partial correla-
tion detailed in Table 3, we observe that Factor 1 was signif-
icantly correlated with the TQ score after controlling for
tinnitus-related anxiety (r=0.10, p=0.047) and significantly
correlated with tinnitus-related depression after controlling
for the loudness of the percept (r=0.10, p=0.048); Factor
2 was significantly negatively correlated with age after con-
trolling for tinnitus-related anxiety (r=-—0.23, p<0.001),
duration (r=-0.20, p=0.001), loudness of the percept
(r=-0.19, p<0.001), and MHL (r=—-0.15, p=0.049); was
significantly negatively correlated with tinnitus-related depres-
sion after controlling for TQ score (r=—0.11, p=0.043); was
significantly negatively correlated with the loudness of the
percept after controlling for TQ score (r=—0.10, p=0.043);
was significantly negatively correlated with MHL after con-
trolling for TQ score (r=—0.27, p=0.001), tinnitus-related
depression (r=-—0.22, p=0.008), duration (r=-0.20, p=
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0.02), and loudness (r=-—0.23, p=0.005) of the percept.
Factor 3 was significantly correlated with age after control-
ling for MHL (r=0.21, p=0.008); was significantly nega-
tively correlated with TQ score after controlling for
tinnitus-related anxiety (r=—0.14, p=0.011) and depression
(r=-0.12, p=0.028), duration (r=-0.15, p=0.01), and
loudness of the percept (r=—0.16, p=0.004). Factor 4 was
significantly correlated with age after controlling for anxiety
(r=0.17, p=0.004), duration (r=0.17, p=0.003), and loud-
ness of the percept (r=0.18, p=0.001); was significantly
negatively correlated with the loudness of the percept after
controlling for MHL (r=—0.18, p=0.021); was significantly
correlated with MHL after controlling for age (r=0.20,
p=0.013), TQ score (r=0.23, p=0.005), tinnitus-related de-
pression (r=0.23, p=0.007), duration (r=0.19, p=0.024),
and loudness of the percept (r=0.27, p=0.001).

Exclusivity of the model

The tinnitus/control model when tested against the tinni-
tus/pain dataset had a better-than-chance success rate at dis-
tinguishing between tinnitus from neuropathic pain patients.
The model yielded percentage of correctly classified cases=
66.40%, percentage of incorrectly classified cases=31.88%),
K-statistic=0.40, MAE=0.38, and RMSE =0.50. Random-
ization of the tinnitus/pain dataset yielded a model with
percentage of correctly classified cases =48.48%, percentage
of incorrectly classified cases=51.52%, k-statistic=0.40,

Factors
mmmm Factor 1
=== Factor2
=== Factor3
Factor 4
=== Factor 1/2 Overlap
mssm= Factor 1/4 Overlap

FIG. 4. Classification of the connections of importance into factors as determined by PCA. Connections were attributed to
Factor 1 (blue), Factor 2 (red), Factor 3 (black), and Factor 4 (yellow). Several connections contributed to more than one
factor; these fell into the Factor 1/Factor 2 overlapping connections (purple) and the Factor 1/Factor 4 overlapping connec-
tions (green). PCA, principal component analysis. Color images available online at www.liebertpub.com/brain


http://online.liebertpub.com/action/showImage?doi=10.1089/brain.2016.0459&iName=master.img-003.jpg&w=490&h=308

OVERLAPPING SUBNETWORKS IN TINNITUS 205
a Factor 1 b Factor 2
Age r=-01,p=.453 Age r=.23, p<.001
0.15
Mean Hearing Loss TQ Mean Hearing Loss TQ
r=-07,p=.211 r=.02,p=.370 r=-25,p =.002 r=-02,p=.379
Loudness Anxiety Loudness Anxiety
r=-05p=.175 r=.04,p=.251 r=-12,p =.017 r=-01,p=.462
Duration Depression Duration Depression
r=.01,p=.412 r=.10, p=.048 r=-.14,p =.008 r=-07,p=.133
c Factor 3 d Factor4
Age r=.03,p=.278 Age r=.16,p=.003
0.15 0.3
Mean Hearing Loss Mean Hearing Loss TQ
r=.05,p=.280 r=-.15,p =.007 r=-22,p = .006 r=-06,p=.178
Loudness Anxiety Loudness Anxiety
r=.01,p=.439 r=-03,p=.342 r=-06,p=.132 r=-04,p=.262

Duration
r=.07,p=.094

Depression
r=-07,p=.121

Duration
r=.01,p=.497

Depression
r=-.031,p=.310

FIG. 5. Correlation of the factors and behavioral correlates. Correlations were deemed significant at *p <0.05 and
**p <0.01 (one-tailed). (a) The correlation of Factor 1, (b) the correlation of Factor 2, (¢) the correlation of Factor 3, and
(d) the correlation of Factor 4 with the different behavioral measures.

MAE=0.38, and RMSE=0.50. The exclusivity of the pre-
diction model was also significantly better at predicting
tinnitus versus neuropathic pain patients compared to the av-
eraged randomized prediction model (y*=21.31, p<0.001)
(Fig. 2).

Discussion

With advancement in network theory, there is an increased
interest to identify the neural signatures for the behavioral
correlates of multisymptom disorders that could explain
both, the mechanism of the underlying pathology as well
as serve as a clinical diagnostic tool. This study aims at pro-
viding empirical evidence for behaviorally segregated, yet
spatially and temporally overlapping functional modules
that integrate in a disorder-specific way, resulting in a holis-
tic experience that is unique to each pathology. In particular,
we aim at establishing empirical evidence to the theoretical
model for tinnitus, proposed by De Ridder and colleagues
(2014b) and in doing so, present a possible clinical diagnos-
tic tool for tinnitus.

The success of the model spun out using the k-fold cross-
validation algorithm, in reliably discriminating cases with

tinnitus from controls significantly above chance is promis-
ing, especially considering the stringency and diminished
bias of cross-validation testing (Lemm et al., 2011). More-
over, the statistical validity of the model is preserved when
comparing the percentage of correctly and incorrectly classi-
fied cases with that of a random model. These results are in
congruence with findings from other pathologies identified
with functional network reorganization, including hepatic
encephalopathy (Jao et al., 2015), autism spectrum disorder
(Nomi and Uddin, 2015), pain (Wager et al., 2013), and mi-
graine (Chong et al., 2016). In addition to the enhanced pre-
cision, the model displays a high degree of specificity by
using only 65 out of 27,888 connections across all brain
areas and frequencies to discriminate tinnitus from the con-
trol dataset. It is, however, important to note that these 65
connections only discriminate the tinnitus network from
the control and hence the rest of the 27,822 connections
are still common to both the tinnitus and the control network,
but have been shown to be organized differently (Mohan
et al., 2016a,b,c).

In agreement with our hypothesis, we observe from the
correlation and partial correlation results that these 66 con-
nections fall into clinically relevant factors that encode
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TABLE 3. PARTIAL CORRELATION BETWEEN FACTORS AND BEHAVIORAL MEASURES
Partial correlation
Behavioral
measure Controlling Factor 1 Factor 2 Factor 3 Factor 4
Age Anxiety —0.03 —(0.23%%** 0.06 0.17%*
Duration —0.02 —0.20%* 0.01 0.17%*
Loudness —0.003 —0.19%** 0.02 0.18%%*
MHL 0.01 —0.15%* 0.2]%* —0.05
TQ Anxiety 0.10%* 0.01 —0.14* —0.04
Depression 0.05 0.08 —0.12% —0.05
Duration 0.00 0.00 —0.15%* —0.06
Loudness 0.05 0.01 —0.16%* —0.03
MHL 0.03 0.10 —0.10 —0.05
Anxiety Age 0.04 —0.05 —-0.02 —-0.02
TQ —0.02 —0.01 0.06 —-0.02
Depression —0.02 0.04 0.02 —0.04
Loudness 0.05 —0.01 —0.03 —0.04
Depression TQ 0.04 —0.11%* 0.04 0.01
Anxiety 0.10 —0.08 —0.07 —0.002
Loudness 0.10%* —0.07 —0.09 —0.004
MHL 0.06 —0.09 —0.08 —0.02
Duration Age 0.02 —0.12 0.06 —0.05
TQ 0.06 —0.13 0.05 —0.01
Loudness 0.03 —-0.13 0.07 —0.01
MHL 0.14 -0.14 —0.06 —0.14
Loudness Age —0.06 —0.08 0.002 —0.09
TQ —0.06 —0.10* 0.07 —0.04
Anxiety 0.05 —0.08 0.03 —0.08
Depression 0.02 —0.06 0.06 —0.08
Duration —0.05 —0.09 —0.04 —0.10
MHL —0.01 —0.01 0.05 —0.18%*
MHL Age —0.06 —0.11 —0.10 0.20%*
TQ —0.08 —0.27%* 0.09 0.23%:*
Depression —0.07 —0.22%%* 0.08 0.23%%*
Duration —0.07 —0.20* 0.05 0.19%*
Loudness —0.07 —0.23%:* 0.02 0.27%*

*p<0.05, **p<0.01, ***p<0.001.
MHL, mean hearing loss; TQ, Tinnitus Questionnaire.

three important aspects of tinnitus—the sensory deprivation/
memory of the deafferented frequency, tinnitus-related de-
pression, and the salience associated with the tinnitus. We
also observe that these connections cluster with respect to
frequency bands in factors 2 (i.e., alpha2), 3 (i.e., delta),
and 4 (i.e., alphal), while factor 1 is mainly a combination
of high frequencies (i.e., beta2 and gamma). Factors 2 and
4 seem to encode the aging and the hearing loss aspects of
tinnitus, respectively. Although the model fairly discrimina-
tes between aging and hearing loss, auditory deprivation is
one of the major effects of aging (Zagdlski, 2006) and
hence is difficult to tease apart the effect of one from the
other (Francis et al., 2003; Huang and Tang, 2010). The
tinnitus-related depression is encoded by factor 1, which
in congruence with previous literature (De Ridder et al.,
2011b; Husain and Schmidt, 2014; Schlee et al., 2009;
Ueyama et al., 2013; Vanneste and De Ridder, 2011; Van-
neste et al., 2010; Weisz et al., 2005) is encoded by the
beta frequency bands. Other aspects of the emotional compo-
nent of tinnitus are captured by the TQ (Adamchic et al.,
2012; Belli et al., 2007; Cronlein et al., 2007; Kam et al.,
2009; Meeus et al., 2007; Zeman et al., 2012), which corre-

lates with factor 3. Most of these connections fall in the delta
band, which is associated with aiding long-distance connec-
tivity and broadcasting information to other parts of the brain
(Uhlhaas, 2013; von Stein and Sarnthein, 2000).
Physiologically, we observe that factors 2 and 4 consist of
some of the important connections between the auditory cor-
tex, parahippocampus, hippocampus, and orbitofrontal cor-
tex, mostly communicating the Alpha2 frequency band. As
mentioned above, these factors seem to be encoding ageing
and hearing, respectively. The auditory deafferentation has
been proposed to cause an increase in the oscillatory activity
in the parahippocampus, which results in a lack of suppres-
sion of unimportant sensory information in the hippocampus
(De Ridder and Vanneste, 2014). Furthermore, the factors
also consist of areas that encode the pitch of the perceived
tinnitus (De Ridder et al., 2014b), which has been shown
to match the edge frequency of hearing loss (Moore, 2010;
Sereda et al., 2015). In factor 1, most of the areas involved,
such as the dorsal lateral prefrontal cortex, the connection
between the rostral and bilateral pregenual anterior cingu-
late cortex, and the insula, form a part of the proposed dis-
tress network (De Ridder et al., 2014b; Schlee et al., 2009;
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Ueyama et al., 2013) mostly found in the beta bands. Consis-
tently, factor 1 also correlated with the tinnitus-related de-
pression. Constant salience of the deprived sensory input
in tinnitus (De Ridder and Vanneste, 2014; Sedley et al.,
2015) triggers the salience network resulting in ‘“‘aversive au-
ditory pain”” (De Ridder et al., 2011a). Some of the areas
identified in factor 3 form a part of this salience network
(Menon, 2015; Schlee et al., 2009; Seeley et al., 2007;
Song et al., 2015). Since these connections are encoded in
the delta band, we can expect that the salience and the
“‘aversive pain”’ encoded in this factor are broadcasted
throughout the brain. Furthermore, our tinnitus model pres-
ents evidence of statistical validity well above chance level
even when tested against physiologically similar patholo-
gies, such as neuropathic pain (De Ridder et al., 2011a,
2014a; Folmer et al., 2001; Isaacson et al., 2003; Mgller,
1997). This unique property of our model not only shows
that functional connectivity serves a better predictor to dis-
criminating similar pathologies compared to neural activity
(Hu and Iannetti, 2016) but also strongly concludes that
the reorganization of the tinnitus network is distinguishably
disorder specific.

From the results of this study, we can conclude that the
neural synchronization captured by the functional connectiv-
ity strength is evident in carrying specific information in
specific oscillatory bands, indicative of the theory of ‘“‘com-
munication through coherence’” (Fries, 2005, 2015). It is im-
portant to keep in mind that although the 66 connections are
reported to fall into distinct factors, this decision is made
depending on their weighted contribution to that particular
factor, implying that their contribution to the other factors
is only less weighted as opposed to completely absent. It is
because of this weighted contribution that the groups of con-
nections may be considered part of overlapping modules
encoding specific behavioral symptoms. Furthermore, this
overlap among factors is observed to be spatial (i.e., have
common regions among different factors), temporal (i.e.,
the same two regions communicate in different frequency
bands), or spatiotemporal (i.e., a combination of both spatial
and temporal overlap). Overlapping community structure
is shown to be an inherent property of complex networks
(Gregory, 2007; Palla et al., 2005; Shen et al., 2009; Yang
and Leskovec, 2014) since it facilitates processing of multi-
modal input at specific nodes in the network (Wu et al.,
2011). This increases the cost-efficiency of information pro-
cessing since the same node takes part in multiple processing
units. Overlapping communities are then integrated by a
small number of long-distance connections (Bassett and
Bullmore, 2006; Sporns and Zwi, 2004; Watts and Strogatz,
1998) that broadcast the unified information throughout the
network, contributing to the cost-efficiency of information
transfer (Bullmore and Sporns, 2012; Latora and Marchiori,
2003). In young healthy brain networks, cognitive processes
such as attention, memory, and language are proposed to
be handled by cognitively segregated yet functionally over-
lapping modules (Mesulam, 1990). In the case of a neu-
ropathology, we observe that the functional network
undergoes a disorder-specific spatiotemporal overlap of
groups of connections that are responsible for segregated
encoding of the behavioral symptoms exclusive to the dis-
order. Such reorganization promotes an undesirable effi-
ciency in the wiring of the disease network (Mohan et al.,
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2016c) and broadcasting of pathological symptoms through-
out the brain.

The presence of functionally overlapping modules in the
brain presents an efficient way of sending information
through the physical anatomical connection between differ-
ent regions. The concept of different frequency bands carry-
ing unique packets of information through the same physical
channel is termed multiplexing (Panzeri et al., 2010). Multi-
plexing allows selective processing of information and
switching between different functional networks (Akam
and Kullmann, 2014). This method allows different brain
areas to engage in different networks (Akam and Kullmann,
2014) and can hence allows efficient processing of multi-
modal input at the same location. Although, sometimes,
there may be only one physical connection between two
brain areas, multiplexing allows different types of informa-
tion to be transmitted to-and-fro the same line (Weinstein
and Ebert, 1971). In this study, we not only observe the pres-
ence of spatial, temporal, and spatiotemporally overlapping
functional networks but also a unique frequency-specific
encoding of behavioral information. This alludes to the
possibility of information being communicated between dif-
ferent regions by means of multiplexing. Multiplexing to-
gether with spatiotemporal overlap of functional modules
may not only improve the efficiency of information transfer
but also gives the brain more degrees of freedom to compen-
sate for the disorder. The application of the concept of multi-
plexing to the brain is relatively new and hence opens
avenues of investigation of efficient transmission of informa-
tion between different brain regions.

Although this study provides a wealth of information
about tinnitus organization, there are some limitations to
the study that have to be addressed. Although the tinnitus
and control groups have comparable average age ranges,
they are not controlled for hearing loss. To avoid issues of
statistical power in machine learning algorithms and to
look at the general effects of tinnitus versus no tinnitus, a
control for hearing loss was not applied. This study, how-
ever, paves way for future studies to look into groups that
have a more stringent control on the inclusion criteria of
the study. Second, although EEG source localization is
gaining traction, it is still a statistical approximation of the
sources of cortically generated potentials. Also, the method
cannot reliably identify subcortical structures such as the
thalamus, nucleus accumbens, amygdala, and parts of the
basal ganglia that have also been shown to play an important
role in tinnitus (Llinas et al., 2005; Maudoux et al., 2012;
Rauschecker et al., 2010). It would be worthwhile to repli-
cate this study using functional magnetic resonance imaging
(fMRI) to confirm and add valuable information to the find-
ings of this study. Despite these limitations, this study has the
advantage of temporal resolution to look into the connections
between different regions on different scales of cortical oscil-
lations. Moreover, different connectome studies are allowing
significant improvement in target selection for invasive and
noninvasive brain stimulation therapies (Crossley et al.,
2014), and our findings may allow an even more specific se-
lection of target that can be tailored to the therapeutic needs
of individual patients. Due to the integration of multimodal
subnetworks, there has recently been a push for classifying
patients on a symptom spectrum rather than the more stan-
dard categorical diagnoses to account for individual patient
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differences across a group of symptoms (Buckholtz and
Meyer-Lindenberg, 2012). Coupled with recent investiga-
tions in connectome changes across the lifespan that could
serve as a baseline (Cao et al., 2014), identification of sepa-
rable subnetworks, along with their behavioral correlates and
the quantification of alterations in connectivity strength from
resting-state data, could become one of the most powerful
and individualized biomarkers of neurological pathologies
(Kaiser, 2013).

Conclusion

Our study shows a disorder-specific reorganization in the
tinnitus network as behaviorally segregated, spatiotempo-
rally overlapping subnetworks providing empirical evidence
to the theoretical tinnitus model proposed by De Ridder and
colleagues. The frequency-specific encoding of behavioral
symptoms between overlapping functional modules suggests
the presence of multiplexing in the brain, which allows
for different types of information to be transmitted through
the same anatomical connection. This type of reorganization
can also be viewed as a compensation mechanism of the
brain to multisymptom disorders presenting an undesired
efficiency of the disease network. Specific to tinnitus, the ex-
clusivity of the model and behavioral categorization of con-
nections could potentially become a clinical tool that might
objectively diagnose the disorder.
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