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Abstract Fibromyalgia is a disorder characterized by

widespread musculoskeletal pain frequently accompanied

by other symptoms such as fatigue. Moderate improvement

from pharmacological and non-pharmacological treatments

have proposed non-invasive brain stimulation techniques

such as transcranial direct current stimulation (tDCS) to the

occipital nerve (more specifically the C2 area) or to the

dorsolateral prefrontal cortex (DLPFC) as potential treat-

ments. We aimed to explore the effectiveness of repeated

sessions of tDCS (eight sessions) targeting the C2 area and

DLPFC in reducing fibromyalgia symptoms, more specif-

ically pain and fatigue. Forty-two fibromyalgia patients

received either C2 tDCS, DLPFC tDCS or sham procedure

(15 C2 tDCS–11 DLPFC tDCS–16 sham). All groups were

treated with eight sessions (two times a week for 4 weeks).

Our results show that repeated sessions of C2 tDCS sig-

nificantly improved pain, but not fatigue, in fibromyalgia

patients, whereas repeated sessions of DLPFC tDCS sig-

nificantly improved pain as well as fatigue. This study

shows that eight sessions of tDCS targeting the DLPFC

have a more general relief in fibromyalgia patients than

when targeting the C2 area, suggesting that stimulating

different targets with eight sessions of tDCS can lead to

benefits on different symptom dimensions of fibromyalgia.
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Introduction

Fibromyalgia is a disorder characterized by widespread

musculoskeletal pain frequently accompanied by other

symptoms including fatigue, headaches, cognitive dys-

function, and disturbances in sleep and mood (e.g.

depression, anxiety, etc) (Wolfe et al. 1990; Bennett et al.

2007; Arnold 2008; Theadom and Cropley 2008; Ghavidel-

Parsa et al. 2015; Chinn et al. 2016). Due to its physical

and psychological impairment, fibromyalgia has a signifi-

cant impact on the affected individuals and on society

(Ghavidel-Parsa et al. 2015; Plazier et al. 2015c).

Depending on the diagnostic criteria used, the prevalence

of fibromyalgia in the general population ranges from 1.2

to 5.4% (Jones et al. 2015) with fatigue reported to be a

debilitating symptom in up to 70% of fibromyalgia patients

(Chinn et al. 2016).

Since fibromyalgia lacks a generally accepted patho-

physiology, a myriad of treatments has been proposed

(Plazier et al. 2014). Current treatment methods consist of

pharmacological (e.g. antidepressants, anti-seizure medi-

cation, etc.) and non-pharmacological approaches (e.g.

exercise therapy, massage therapy, etc.) (Sauer et al. 2011;

Chinn et al. 2016). A recent meta-analysis, however, sug-

gested that pharmacological treatment of fibromyalgia

results in limited benefits and that there is also insufficient
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evidence with regards to non-pharmacological treatments

(Nuesch et al. 2013). Therefore, it has been proposed that a

combination of therapies (Nuesch et al. 2013) or a funda-

mentally new approach can be used to improve treatment

outcomes (Plazier et al. 2015c).

In the past decade, non-invasive neuromodulation

techniques, such as transcranial direct current stimula-

tion (tDCS), have increasingly been introduced as a

potential therapeutic intervention for a wide array of

disorders such as aphasia, stroke, tinnitus, depression,

schizophrenia, craving, migraine, and Parkinson’s dis-

ease amongst others (e.g. Boggio et al. 2006; Fregni

et al. 2006a, 2008; Chadaide et al. 2007; Vanneste et al.

2010; Brunelin et al. 2012; Stagg et al. 2012; Marangolo

et al. 2013). tDCS is a non-invasive technique that uses a

low amplitude direct current applied transcutaneously to

the scalp to modify underlying neural activity (Nitsche

and Paulus 2000; Nitsche et al. 2003; Miranda et al.

2006; Plazier et al. 2015c). Since fibromyalgia is sug-

gested to be a condition associated with functional brain

changes (Napadow et al. 2012), tDCS could be a

potential approach for the treatment of fibromyalgia

symptoms (Montoya et al. 2006; Cook et al. 2007b;

Diers et al. 2008; Marlow et al. 2013).

Although the exact mechanism underlying

fibromyalgia is unknown, neuroimaging studies have

shown brain activity and connectivity changes resulting

in enhanced pain facilitation in combination with

defective inhibition of nociceptive signals augmenting

pain perception (Jensen et al. 2013). These activity

changes have been found in the insula, prefrontal cor-

tex, and the anterior cingulate cortex (Pujol et al. 2014;

Dehghan et al. 2016). In addition, functional connec-

tivity changes were shown in the self-referential default

mode network and the executive control network in

fibromyalgia patients (Pujol et al. 2014). These network

changes in fibromyalgia are similar to what was found

in chronic back pain patients, which was interpreted as

a lasting effect of pain on brain function (Baliki et al.

2008). More recently, deficient descending pain inhi-

bitory mechanism originating from the pregenual ante-

rior cingulate cortex has been described in fibromyalgia

patients as well (Jensen et al. 2013).

Interestingly, these brain activity and connectivity

changes have also been related to fatigue in patients with

multiple sclerosis, patients with mild traumatic brain injury

and patients with a myalgic encephalomyelitis/chronic

fatigue syndrome (Roelcke et al. 1997; Filippi et al. 2002;

DeLuca et al. 2008; Saiote et al. 2014; Boissoneault et al.

2016; Gay et al. 2016; Nordin et al. 2016). Indeed, fMRI

studies on chronic fatigue syndrome have shown changes

in brain activations in, for example, the superior frontal

cortex and the default mode network, while performing

fatiguing cognitive tasks (Cook et al. 2007a, b). Another

study looking at structural changes also showed bilateral

decrease in gray matter volume in the prefrontal area

among chronic fatigue syndrome patients as a region that

regulates sensations of fatigue (Okada et al. 2004).

TDCS studies in fibromyalgia patients have suggested

both the left dorsolateral prefrontal cortex (DLPFC) and

primary motor cortex (M1) as potential targets for tDCS

treatments (e.g. Fregni et al. 2006b; Roizenblatt et al.

2007; Valle et al. 2009; Riberto et al. 2011; Villamar

et al. 2013; Fagerlund et al. 2015; Foerster et al. 2015;

Castillo-Saavedra et al. 2016; Cummiford et al. 2016;

Mendonca et al. 2016; for review see Lefaucheur et al.

2017; Zhu et al. 2017). Although positive results were

in favor of tDCS targeting M1 instead of tDCS targeting

the DLPFC (20 min tDCS sessions of 2 mA on 5 con-

secutive days) (Fregni et al. 2006b; Roizenblatt et al.

2007; Zhu et al. 2017), increasing the treatment duration

to ten tDCS sessions targeting the DLPFC did lead to

improvement in pain scores (Valle et al. 2009;

DallAgnol et al. 2015) and quality of life (Valle et al.

2009). In general, pain relief was associated with

improvement in quality of life in most tDCS studies in

patients with fibromyalgia (Lefaucheur et al. 2017).

Based on previous findings that the frontal lobes seem

to play a crucial role in both fatigue and pain and based

on previous tDCS studies demonstrating pain and

quality of life improvements after DLPFC tDCS in

fibromyalgia patients, we hypothesized that using tDCS

targeting the prefrontal cortex might reduce both

symptoms in fibromyalgia patients.

Furthermore, previous implant studies have also

demonstrated that stimulating the greater occipital nerve

area is beneficial against pain and fatigue complaints in

fibromyalgia patients (Thimineur and De Ridder 2007;

Plazier et al. 2014, 2015a). A recent tDCS study targeting

the same area has further shown improvements in pain

symptoms (Plazier et al. 2015c). The exact mechanism of

action of occipital nerve field stimulation is still unknown,

but studies using fMRI and PET techniques have shown

modulated brain activity in several important brain areas

involved in pain perception after stimulation (e.g. Matharu

et al. 2004; Kovacs et al. 2011).

Hence, in this study, we aim to explore the effectiveness

of repeated sessions of tDCS (eight sessions) targeting the

dorsal lateral prefrontal cortex and the greater occipital

nerve in reducing fibromyalgia symptoms, specifically pain

and fatigue. We further investigate whether stimulating

different targets for eight sessions will lead to benefits

against different symptom dimensions of fibromyalgia. We

hypothesize that repeated sessions of tDCS targeting the

DLPFC or the C2 would improve pain and fatigue in

fibromyalgia patients.
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Materials and methods

Participants

Patients suffering from fibromyalgia were selected by the

Department of Physical Medicine and Rehabilitation at the

University Hospital Antwerp, Belgium according to the

criteria of the ACR-90 (Wolfe et al. 1990). To obtain a

homogeneous sample and exclude potential variables that

would interfere with the response to tDCS we excluded

subjects based on the following criteria: patients harboring

pathologies mimicking the symptoms of fibromyalgia,

having a history of epileptic insults, severe organic co-

morbidity, a pacemaker or defibrillator, current pregnancy,

neurological disorders such as brain tumors, and patients

suffering from severe organic or psychiatric co-morbidity

(except minor depressive disorder). None of the patients

were suffering from cervicotrigeminal tract radicular

symptoms or types of hemicrania.

Forty-two patients (36 females and 6 males) with

fibromyalgia participated in the study with a mean age of

46.95 years (±10.07 SD). See descriptions of the sample

characteristics in Table 1. All patients were intractable to

tricyclic antidepressants (amitriptyline), pain medication,

magnesium supplements, physical therapy and psycholog-

ical support. All patients agreed to make no changes in

their current medication intake, which primarily included

the aforementioned medication.

Experimental design

The study was in accordance with the ethical standards of

the Helsinki Declaration (1964) and was approved by the

Ethical Committee of the University Hospital Antwerp

Belgium. Written informed consents were obtained from

all patients before participating in the study.

The study is designed as a prospective, single-blinded,

placebo controlled, randomized, parallel-group study.

Patients were blinded and randomly assigned to one of

three groups, namely sham tDCS, bifrontal tDCS or

occipital tDCS, after baseline measurements using a com-

puter-generated randomization sequence that is revealed to

the investigator conducting the treatments immediately

before the first session. Both the bifrontal tDCS and

occipital tDCS group received eight sessions (two times a

week for 4 weeks) of treatment, while the sham tDCS

group received sham treatment for 4 weeks. See Fig. 1 for

study design.

Evaluation

Before and immediately after (i.e. after the last session of

tDCS) the tDCS procedures, the participants completed a

set of validated self-report inventories. The primary out-

come measure for the efficacy of treatment was evaluated

by changes in the Numeric Rating Scale (NRS).

NRS

A Numeric Rating Scale for pain intensity was used. The

scale asks patients to rate their pain intensity on a scale

from 1 (i.e. no pain) to 10 (i.e. worst pain imaginable).

Secondary outcome of treatment was measured using

the Pain Catastrophizing Scale (PCS) and the Modified

Fatigue Impact Scale (MFIS).

PCS

The Pain Catastrophizing Scale indicates the catastro-

phizing impact of pain experienced by the patient. It con-

sists of 13 statements concerning pain experiences. Each

question is rated on a 5-point scale ranging from 1 (i.e. not

at all) to 4 (i.e. all the time) (Osman et al. 1997).

MFIS

The Modified Fatigue Impact Scale is 21-item instrument

designed to rate the extent to which fatigue affects

Table 1 Characteristics for

each group separately and the

grand total

tDCS target Total (n = 42)

Occipital (n = 15) Frontal (n = 11) Sham (n = 16)

Gender M: 3/F: 12 M: 1/F: 10 M: 2/F: 14 M: 6/F: 36 NS

Age 47.13 (10.01) 47.81 (10.17) 46.19 (49) 46.95 (10.07) NS

Medication None None None None

NRS baseline 7.07 (1.33) 6.81 (1.08) 6.00 (1.41) 6.59 (1.36) NS

PCS baseline 24.73 (10.75) 23.09 (8.43) 23.81 (11.05) 23.95 (10.30) NS

MFCS baseline 61.27 (9.49) 56.73 (16.96) 51.44 (16.87) 51.44 (14.94) NS

Information between parentheses is the standard deviation

M male, F female, NS not significant
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perceived function. Each item is rated on a scale from 0

(i.e. never) to 4 (i.e. almost always) (Fisk et al. 1994).

Transcranial direct current stimulation

Direct current (DC) was transmitted by a saline-soaked pair

of surface sponges (35 cm2) and delivered by specially

developed, battery-driven, constant current stimulator with

a maximum output of 10 mA (Neuroconn�; http://www.

neuroconn.de).

Fifteen patients received occipital tDCS in which the

electrodes were placed over left and right C2 nerves der-

matomes (i.e. left anode, right cathode). Eleven patients

received bifrontal stimulation with the anodal electrode

placed over left dorsolateral prefrontal cortex and the

cathodal electrode over the right dorsal lateral prefrontal

cortex. The site for stimulation was determined by the

International 10/20 Electroencephalogram System corre-

sponding to F3 and F4, respectively. The DC current was

initially increased in a ramp-like fashion over 5 s until it

reached 1.5 mA. TDCS stimulation was maintained for a

total of 20 min and then ramped down over 5 s. Sixteen

patients received sham tDCS, in which the placement of

the electrodes was identical to real tDCS (eight patients

received C2 and eight received frontal tDCS). The DC in

the sham procedure was first switched on in a ramp-up

fashion over 5 s until it reached 1.5 mA. Then, the current

intensity was gradually reduced (ramp down) over 5 s until

it is switched off. This was followed by 20 min of no active

stimulation. Thus, the active part in the sham procedure

only lasted maximum 10 s (ramping up and ramping down)

in comparison to 20 min and 10 s in the real procedure, but

the sham session lasted as long as the real tDCS treatment

session to appropriately blind the procedure. The rationale

behind this sham procedure was to mimic the transient skin

sensation at the beginning of real tDCS without producing

any conditioning effects on the brain.

Safety and complications

TDCS was well tolerated and no tDCS related complica-

tions were noted by the patients during the tDCS sessions.

Statistical analysis

We calculated our sample by assuming an a level of 0.05

(two-sided), power of 80%, and an effect size f of 0.25 of

the NRS. This resulted in a sample size of 42.

We used SPSS version 22.0 for all statistical analyses.

Kolmogorov–Smirnov test revealed that our data were

normally distributed (KS = 0.123, p = 0.123), i.e. no

significant difference was obtained from normal

Fig. 1 Study design
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distribution. A Machly’s test of Sphericity revealed no

significant effect indicating that the sphericity assumption

has been met. A repeated measure ANOVA was applied

with as dependent variables time point (pre versus post)

and between subjects the condition (frontal stimulation,

occipital stimulation and sham stimulation) for NRS, PCS

and MFIS. The g2 was used to indicate the effect size/as

simple contrast analysis was used to compare between the

three conditions separately. To compare the amount of

reduction between the conditions an independent t test was

applied. We used the Cohen’s d to report the effect size.

Results

A repeated measure ANOVA for the NRS yielded in a

significant main effect when comparing pre versus post

treatment with post results (F(1, 39) = 58.27, p\ 0.001,

g2 = 0.60) indicating that, after eight sessions of tDCS

(M = 5.10, SD = 1.91), a lower score was obtained on the

NRS in comparison to pre-stimulation (M = 6.59,

SD = 1.36). No significant main effect was obtained for

condition (frontal, occipital or sham) (F(2, 39) = 0.25,

p = 0.78, g2 = 0.01), but a significant interaction effect

was demonstrated between conditions and time point (F(2,

39) = 7.37, p = 0.002, g2 = 0.27). A simple contrast

analysis revealed that frontal stimulation (F(1,

39) = 31.18, p\ 0.001, g2 = 0.43) as well as occipital

stimulation (F(1, 39) = 38.14, p\ 0.001, g2 = 0.48) had a

significant reduction of respectively, 33.50 (SD = 22.79)

and 31.05 (SD = 21.39). See Fig. 2 for an overview. Sham

stimulation (F(1, 39) = 2.28, p = 0.14 g2 = 0.06;

M = 8.41%, SD = 18.07) did not obtain a significant

effect. A further analysis showed that frontal stimulation

did not significantly differ from occipital stimulation in the

amount of pain reduction (t(24) = 0.28, p = 0.78,

d = 0.11). However, there were significant effects between

frontal stimulation and sham stimulation (t(25) = 3.19,

p = 0.004, d = 1.28) as well as between occipital stimu-

lation and sham stimulation (t(29) = 3.19, p = 0.003,

d = 1.18).

A repeated measures ANOVA for the PCS showed a

significant main effect for pre versus post (F(1,

39) = 22.74, p\ 0.001, g2 = 0.37) indicating that after

eight sessions of tDCS (M = 19.90, SD = 10.09) a lower

score was obtained on the PCS in comparison to pre-

stimulation (M = 23.95, SD = 10.30). No significant main

effect was obtained for condition (frontal, occipital or

sham) (F(2, 39) = 0.38, p = 0.69, g2 = 0.02), but a sig-

nificant interaction effect (F(1, 39) = 4.07, p = 0.025,

g2 = 0.17) between conditions and time point (pre or post)

was shown, indicating a significant difference between pre

versus post treatment for the occipital stimulation (F(1,

39) = 16.23, p\ 0.001, g2 = 0.29) and frontal stimulation

(F(1, 39) = 12.27, p = 0.001, g2 = 0.24). See Fig. 2 for

an overview. For the sham group, no significant effect (F(1,

39) = 0.32, p = 0.58, g2 = 0.01) was obtained. A sup-

pression effect of 24.46% (SD = 31.66) was obtained for

occipital stimulation, and a suppression effect of 30.21%

(SD = 32.18) was obtained for frontal stimulation. Sup-

pression effect for sham stimulation was -1.19%

(SD = 21.42). A further analysis showed that frontal

(t(25) = 3.05, p = 0.005, d = 1.22) and occipital

(t(29) = 2.66, p = 0.013, 0.99) stimulation significantly

differed from sham stimulation, but that there was no

significant difference between frontal and occipital stimu-

lation (t(24) = 0.46, p = 0.65, d = 0.19).

A repeated measure ANOVA for MFIS showed a main

effect for pre versus post (F(1, 39) = 20.17, p\ 0.001,

g2 = 0.34) revealing that, after eight sessions of tDCS

(M = 48.13, SD = 15.70), participants had a reduction in

their fatigue scores in comparison to before the tDCS

treatment (M = 56.33, SD = 14.94). No main effect was

obtained for condition (F(2, 39) = 2.26, p = 0.12,

g2 = 0.10), but a significant interaction effect was obtained

between conditions and time point (F(1, 39) = 4.16,

p = 0.023, g2 = 0.18). A simple contrast analysis revealed

that frontal stimulation (F = 20.44, p\ 0.001, g2 = 0.34)

had a significant reduction of 29.78% (SD = 18.35), while

occipital stimulation (F(1, 39) = 3.31, p = 0.08,

g2 = 0.08; M = 8.64%, SD = 19.10) and sham stimula-

tion (F(1, 39) = 1.21, p = 0.28, g2 = 0.03; M = 3.10%,

SD = 20.87) did not obtain a significant effect. See Fig. 2

for an overview. A further analysis showed that frontal

stimulation significantly differed from occipital

(t(24) = 2.83, p = 0.009, d = 1.16) and sham stimulation

(t(25) = 3.42, p = 0.002, d = 1.37), but there was no

significant difference between occipital and sham stimu-

lation (t(29) = 0.77, p = 0.45, d = 0.29).

Discussion

This study shows that eight sessions of tDCS targeting the

DLPFC resulted in more general relief (reducing pain and

fatigue) in fibromyalgia patients when compared to eight

sessions of tDCS targeting C2 (only reducing pain). This

suggests that using the same stimulation duration for dif-

ferent targets will lead to benefits on different symptom

dimensions of fibromyalgia. There were no adverse effects

associated with these new treatment protocols of eight

sessions.

Findings from related studies can shed some light on

why DLPFC tDCS improved pain and fatigue in the

fibromyalgia patients in this study. For pain, research has

shown that left DLPFC stimulation had an unexpected
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effect on pain reduction when treating depression

(O’Reardon et al. 2007). Since then, the potential of

DLPFC stimulation for chronic pain in general, and pain in

fibromyalgia in particular, has been investigated (Le-

faucheur et al. 2017), motivated by the proven efficacy of

this stimulation target for depression and the well-known

relation between depression and chronic pain (Lefaucheur

et al. 2014). Studies have shown that DLPFC stimulation

can be effective in pain control, decreasing the threshold

for pain sensation in healthy subjects (Graff-Guerrero et al.

2005; Borckardt et al. 2007; Boggio et al. 2008; Nahmias

et al. 2009; Brighina et al. 2011) as well as reducing

Fig. 2 Both occipital and

bifrontal stimulation showed an

effect in pain measured by the

NRS and PCS compared to

sham. Only frontal stimulation

demonstrated an effect on the

MFAS
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clinical pain symptoms (Borckardt et al. 2006, 2009; Valle

et al. 2009; Borckardt et al. 2011; DallAgnol et al. 2015;

Ayache et al. 2016). Valle and Colleagues (2009) have

previously demonstrated the importance of the duration of

the DLPFC tDCS treatment, as five sessions of DLPFC

tDCS did not result in pain reduction in the study of Fregni

et al. (2006c) and Roizenblatt et al. (2011). This study

shows that eight sessions of 1.5 mA DLPFC tDCS spread

over 4 weeks (two times a week for 4 weeks) was suffi-

cient to reduce pain symptoms in fibromyalgia and that 10

daily sessions of 2 mA DLPFC tDCS such as the study of

Valle et al. (2009) and Dallagnol et al. (2015) was not

needed. However, unlike Valle and Colleagues (2009), this

study did not measure any potential long-term effects. The

key role of the DLPFC in pain modulation has been

examined by Lorenz and his colleagues (Lorenz et al.

2002; Lorenz et al. 2003). They suggested that the DLPFC

may exert a ‘top-down’ inhibition on neuronal coupling

along the ascending midbrain-thalamic-cingulate pathway

through descending fibers from the prefrontal cortex

(Lorenz et al. 2003; Brighina et al. 2011).

For fatigue, support can be found in Multiple Sclerosis

(MS) research, where fatigue has been associated with

functional (Roelcke et al. 1997; Filippi et al. 2002; DeLuca

et al. 2008) and structural (Sepulcre et al. 2009; Pardini

et al. 2010; Bester et al. 2013) changes in the frontal cortex

(Saiote et al. 2014). Saiote and his colleagues (2014) did

not find a robust effect after five sessions of 1 mA tDCS

targeting the DLPFC in MS patients on fatigue, but sug-

gested that the absence of effect might be due to the chosen

stimulation parameters (Saiote et al. 2014). Our study

revealed that eight sessions of 1.5 mA tDCS targeting the

DLPFC can modulate fatigue.

With regards to the C2 target, occipital nerve field

stimulation as a treatment for fibromyalgia patients has

been mostly investigated for surgical techniques involving

the placements of implanted subcutaneous electrodes on

the C2 area (e.g. (Thimineur and De Ridder 2007; Plazier

et al. 2014; Plazier et al. 2015b)). In contrast to our study

findings using tDCS to non-invasively target C2, the

invasive method has demonstrated to treat pain and fatigue

in fibromyalgia patients (Thimineur and De Ridder 2007;

Plazier et al. 2014; Plazier et al. 2015b). A pilot study

investigating the non-invasive technique of C2 tDCS (three

sessions) as a predictive measure for invasive occipital

nerve stimulation further found a reduction in pain per-

ception compared to the sham group, suggesting that C2

tDCS could potentially become an alternative non-invasive

pain treatment for fibromyalgia (Plazier et al. 2015c).

Although the exact mechanism of action of C2 nerve field

stimulation is still unknown, hypotheses of its beneficial

effect have been suggested. Stimulation of the area sup-

plied by the greater occipital nerve modulates brain activity

in several important regions involved in pain perception as

shown by functional imaging techniques, including fMRI

and PET scans (Kovacs et al. 2011; Magis et al. 2011).

During occipital nerve field stimulation, PET data

demonstrated that activity in the anterior cingulate gyrus,

the precuneus, amygdala, ventroposteriolateral nuclei of

thalamus, and the frontal cortex are modulated. These

structures are involved in attention to pain, pain perception,

and emotional interpretation (Garcia-Larrea and Peyron

2013).

Although the DLPFC and C2 stimulation both improved

pain, fatigue was only improved with DLPFC stimulation

in our study. Previous studies using surgical neuromodu-

lation techniques targeting the C2 area, however, did

demonstrate improvement in both pain and fatigue in

fibromyalgia patients (Thimineur and De Ridder 2007;

Plazier et al. 2014, 2015b). A possible explanation for the

absence of significant improvements in fatigue in our study

compared to the previous studies might be the duration of

the stimulation. In the studies where the electrodes tar-

geting the C2 were implanted, the stimulation was kept on

continuously for at least 1–5 weeks, except when patients

preferred to turn the unit off on their own initiative (e.g. at

night). On the other hand, our non-invasive C2 tDCS

stimulation was performed for eight sessions of 20 min

spread over 4 weeks. We hypothesize that C2 tDCS might

need a longer stimulation duration to evoke significant

improvements in fatigue.

This study has some limitations. First, this study did not

include other affective dimensions of fibromyalgia, such as

depression or anxiety. Adding these aspects can further

disentangle the specific benefits of the different stimulation

targets. Further, our study did not include M1 stimulation,

not being able to compare the results on different symptom

dimensions for all possible stimulation targets known for

fibromyalgia patients. Also, our study did not include long-

term assessments to measure potential long-term effects.

Therefore, it remains unknown whether eight sessions of

DLPFC tDCS over 4 weeks is sufficient to induce long-

term effects compared to the proven ten daily sessions.

Lastly, our study sample is relatively small; therefore, the

results need to be interpreted with caution. Our findings

encourage future research using tDCS in fibromyalgia to

elucidate which stimulation targets will lead to benefits on

various symptom dimensions to be able to develop more

efficient treatments for different subgroups of fibromyalgia

patients.

In conclusion, this study shows that repeated sessions of

tDCS targeting the DLPFC has a more general relief in

fibromyalgia patients than when targeting C2, suggesting

that stimulating different targets will lead to benefits on

different symptom dimensions of fibromyalgia. The stim-

ulation protocol is feasible for clinical routine and was well
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tolerated by all participants. Further studies should take the

limitations of this study into account and add more affec-

tive aspects of fibromyalgia when investigating the effect

of tDCS in fibromyalgia.
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