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The mechanism of tinnitus suppression after cochlear implantation (CI) in single-sided
deafness (SSD) is not fully understood. In this regard, by comparing pre- and post-CI
quantitative electroencephalography (qEEG), we explored cortical changes relevant to
tinnitus improvement. In SSD patients who underwent CI, qEEG data were collected:
(1) before CI, (2) 6 months post-operatively with CI-on, and (3) 30 min after CI-off
and source-localized cortical activity/functional connectivity analyses were performed.
Compared to the pre-operative baseline, the CI-on condition demonstrated significantly
decreased activity in the right auditory- and orbitofrontal cortices (OFC) for the delta
frequency band as well as decreased connectivity between the auditory cortex/posterior
cingulate cortex for the delta/beta2 bands. Meanwhile, compared to the CI-off condition,
the CI-on condition displayed decreased activity in the right auditory cortices/OFC for
the delta band, and in bilateral auditory cortices, left inferior frontal cortex/OFC for the
gamma band. However, qEEG analyses showed no significant differences between
the CI-off and baseline conditions. CI induced overall decreased cortical activity and
functional connectivity. However, judging from no differences between the CI-off and
baseline conditions, CI-induced cortical activity and functional connectivity changes are
not by cortical plastic changes, but by dynamic peripheral reafferentation.

Keywords: single side deafness, tinnitus, cochlear implantation, electroencephalography, dynamic peripheral
reafferentation

INTRODUCTION

Tinnitus, the conscious perception of sound in the absence of a corresponding external acoustic
stimulus (Baguley et al., 2013), afflicts 10–15% of the adult population and interferes severely
with the quality of life of 5–26% of the affected population (Heller, 2003; Krog et al., 2010).
The development of tinnitus is frequently deemed to be a neuroplastic response to sensory
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deprivation (Eggermont and Roberts, 2004; Song et al., 2012).
This assumption is supported by a transient perception of tinnitus
after experimentally induced partial (Schaette et al., 2012) and
complete (Del Bo et al., 2008) temporary auditory deprivation in
normal subjects, and was further reinforced by lack of tinnitus
in congenitally deaf animal models (Eggermont and Kral, 2016).
Furthermore, analogous to phantom limb pain, the tinnitus
spectrum corresponds to auditory deprived frequencies (Norena
et al., 2002).

In patients with severe peripheral auditory deafferentation,
reafferentation of the ascending auditory nervous system
with cochlear implants (CI) may abate tinnitus. Indeed, CI
improved tinnitus significantly in 66–100%of CI users with
bilateral profound hearing loss (Ruckenstein et al., 2001). Also,
improvement of tinnitus by CI was reported in patients with
single-sided deafness (SSD) and ipsilesional debilitating tinnitus
(Punte et al., 2011). In a recent meta-analysis, CI showed a
statistically significant improvement in the severity of tinnitus
(Blasco and Redleaf, 2014). In this regard, CI is a promising
treatment option for patients with SSD and combined severe
tinnitus.

However, the mechanism of tinnitus suppression after CI in
patients with SSD is not fully understood. In previous literature,
several mechanisms of CI-mediated tinnitus suppression
have been suggested. Some researchers have claimed that
acoustic masking provided by CI is the primary mechanism
of tinnitus suppression, by distracting attention from tinnitus
(Andersson et al., 2009; Kleinjung et al., 2009), while others
have suggested that plastic changes in the central auditory
system by prolonged CI stimulation (Giraud et al., 2001)
and electrical stimulation resulting in contralateral residual
inhibition (Souliere et al., 1992) are possible mechanisms
of tinnitus suppression. These assumptions are, however,
based on inferential reasoning rather than data-driven
analysis.

From this perspective, a study to explore post-CI changes in
patients with SSD with regard to ongoing cortical activity may
be of help in further understanding the mechanism of tinnitus
alterations in SSD subjects after CI. By comparing pre- and post-
CI source-localized quantitative electroencephalography (qEEG)
findings, we attempted to find CI-driven cortical activity changes
that may have abated subjective tinnitus in patients with SSD.
Additionally, by analyzing changes in functional connectivity, we
sought to reveal changes in functional connections of remote
brain areas that may be responsible for the improvement of
tinnitus after CI.

MATERIALS AND METHODS

Participants
Four patients (three men and one woman) with unilateral
acquired SSD (pure tone threshold >90 dB at 0.5, 1, 2, and
4 kHz) and ipsilateral tinnitus underwent pre-operative EEG
and subsequent CI with a Med-EL device (Med-EL, Innsbruck,
Austria). All patients presented with left-sided SSD and the
median duration of deafness was 4.5 years (range, 9 months

to 5 years). All four patients’ etiology of SSD was idiopathic
sudden sensorineural hearing loss. The detailed demographic
characteristics of the patients are summarized in Table 1.

The criteria for CI in patients with SSD and tinnitus were:
(1) a duration of SSD < 10 years, (2) tinnitus development
after SSD onset, and (3) tinnitus loudness on a numeric
rating scale (NRS) ≥ 6 of 10 for at least 6 months that
was intractable to conventional therapies including medication,
tinnitus retraining therapy, and non-invasive neuromodulation
such as transcranial magnetic stimulation or transcranial direct
current stimulation. The exclusion criteria were: (1) severe
depression with a Beck Depression Index (Beck and Steer, 1984)
score > 16, and (2) a presumed etiology of tinnitus other
than SSD. With regard to tinnitus loudness and tinnitus-related
distress, all patients were evaluated using a NRS loudness score
and a tinnitus questionnaire (TQ) (Goebel and Hiller, 1994)
score.

This study and all related documents were approved by the
ethics committee of Antwerp University Hospital. All patients
gave written informed consent before enrollment. The study
procedures were carried out in accordance with the relevant
guidelines and regulations.

EEG Recording
Pre-operative and 6-month post-operative EEGs were performed
in all four patients. Pre-operative EEGs were recorded during
resting-state for 5 min, while post-operative EEGs were recorded
for 5 min under the following two conditions: (1) CI switch-on
with a music stimulus (classical music from a radio channel) to
the CI ear presented directly to the external audio processor via
an audio cable at the most comfortable loudness level for each
patient (CI-on); and (2) CI switch-off with no sound stimulus
(CI-off).

Electroencephalograms were measured using the WinEEG
software version 2.84.44 (Mitsar, St. Petersburg, Russia) in
a room shielded against sound and stray electric fields with
patients sitting upright with their eyes closed to reduce
resting-state skin conductance levels in overall frequency
bands (Barry et al., 2007, 2009). The EEG was sampled
with 19 electrodes in the standard 10–20 International
placements referenced to linked ears. While recording,
impedance was maintained below 5 k� at all electrodes.
Data were recorded with a sampling rate of 1,024 Hz using
a 0.15 Hz high-pass filter and a 200 Hz low-pass filter.
After initial recording, the data were processed offline by
resampling to 128 Hz and band-pass filtering at 2–44 Hz by
employing a fast Fourier transform filter with application
of a Hanning window, and then imported into the Eureka!
Software (Sherlin and Congedo, 2005) for precise artifact
rejection before source-localization. All artifacts in the
recorded EEG stream were removed meticulously by manual
inspection.

The vigilance of all participants was checked by monitoring
EEG streams to prevent unwanted changes, caused by
drowsiness, such as alpha rhythm slowing or the appearance
of spindles (Moazami-Goudarzi et al., 2010); no enrolled
participant exhibited drowsiness-related EEG changes.
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Artifact Removal by Band-Limited
Independent Component Analysis
Localization of the cortical resting-state or auditory evoked
potentials in CI users via qEEG is confounded by stimulus
artifacts produced by the implanted device itself. In a previous
article, we described a successful method of CI artifact removal
from specific bands in the EEG streams of patients with CIs
using band-limited independent component analysis [BL-ICA,
for further information, please refer to Kim et al. (2015)]. BL-ICA
successfully removes artifacts by applying a narrow band-pass
filter, which limits the number of sources and enhances the signal
to noise ratio, thus allowing CI artifacts to be clearly detected
and separated from other brain sources. By applying BL-ICA, all
post-operative EEG data measured while listening to music were
cleaned.

Source Localization Analysis
Low-resolution brain electromagnetic tomography (LORETA)-
KEY software1, dedicated to functional localization of
current densities based on certain electrophysiological and
neuroanatomical constraints, (Pascual-Marqui, 2002) was
utilized to localize the cortical sources that generated the
scalp-recorded electrical activity in each of the following eight
frequency bands: delta (2–3.5 Hz), theta (4–7.5 Hz), alpha
1 (8–10 Hz), alpha 2 (10–12 Hz), beta 1 (13–18 Hz), beta 2
(18.5–21 Hz), beta 3 (21.5–30 Hz), and gamma (30.5–44 Hz)
(Song et al., 2013a,b, 2014, 2015a,b; Vanneste et al., 2013; Kim
et al., 2015, 2016). This software implements the lead field of
Fuchs et al. (2002) that was derived from standard electrode
positions realigned to a standard Montreal Neurological Institute
(MNI)-152 head in combination with a boundary element
method derived from the same standard anatomy (Jurcak et al.,
2007). The LORETA-KEY anatomical template divides the
neocortical MNI-152 volume, including the hippocampus and
anterior cingulate cortex, into 6,239 voxels with dimensions
of 5 mm × 5 mm × 5 mm, based on the Daemon Atlas
(Lancaster et al., 2000). Anatomical labeling of significant
clusters was performed automatically by a toolbox implemented
in LORETA-KEY. The locations of significant clusters were
initially investigated using the Anatomy toolbox (Eickhoff et al.,
2005), and were reconfirmed using the Talairach and Tournoux
atlas (Talairach and Tornoux, 1988). Renders were generated
using the BrainNet Viewer2 (Xia et al., 2013).

Functional Connectivity
Using the pre- and post-operative qEEG data, the extent
of phase synchronization and coherence between the time
series corresponding to different regions of interest (ROIs)
were calculated to analyze functional connectivity. To calculate
functional connectivity, we employed the built-in connectivity
toolbox of the LORETA-KEY. This toolbox defines measures
of linear- and non-linear dependence (i.e., coherence and
phase synchronization) between multivariate time series. In the

1http://www.uzh.ch/keyinst/NewLORETA/Software/Software.htm
2http://www.nitrc.org/projects/bnv/
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current study, we have calculated lagged linear coherence that
excludes non-lagged parts of coherence which comprises effects
of volume conduction, and effects of non-recorded sources
that simultaneously drive recorded sources (Milz et al., 2014).
For lagged linear coherence connectivity analysis, a total of
28 ROIs defined by Brodmann areas (BA) were selected as
possible nodes based on previous literature on tinnitus: bilateral
primary and secondary auditory cortices (A1s and A2s) (Rolls,
2004; Kringelbach, 2005), bilateral parahippocampus (PHC)
(Landgrebe et al., 2009), bilateral dorsal/pregenual/subgenual
anterior cingulate cortices (dACC/pgACC/sgACC) (Vanneste
et al., 2010; De Ridder et al., 2011), bilateral posterior cingulate
cortices (PCC) (Vanneste et al., 2010; Schecklmann et al., 2011),
bilateral insula, bilateral precuneus, and bilateral orbitofrontal
cortices (OFC) (Vanneste et al., 2010; De Ridder et al.,
2011).

Statistical Analysis
To identify cortical activity differences between pre-operative
resting-state and post-operative sound stimuli-induced cortical
activity, between pre-operative resting-state and post-operative
device-off state activity, and between post-operative device-
on with sound stimuli and device-off state activity (“CI-
on – CI-off”), voxel-by-voxel analysis using LORETA-KEY was
performed for the eight frequency band between-condition
comparisons of the current density distribution. Also, regression
analyses were performed to compare between “CI-on – CI-
off” and percent improvement in tinnitus loudness and between
“CI-on – CI-off” and percent improvement in TQ score.
For source-localized group comparison analyses, statistical
non-parametric mapping (SnPM) of LORETA-KEY images
was performed for each contrast using LORETA-KEY’s built-
in voxelwise randomization tests (5000 permutations) and
employing a log-F-ratio statistic for independent groups with a
threshold of P < 0.01. A correction for multiple comparisons
in SnPM using random permutations (5000 permutations in
the current study) has been proven to give results similar
to those obtained from a comparable Statistical Parametric
Mapping approach using a general linear model with multiple
comparison corrections derived from random field theory
(Holmes et al., 1996; Nichols and Holmes, 2002). Additionally,
power spectral density (PSD) was calculated by EEGLAB
toolbox (Delorme and Makeig, 2004). Topography was described
based on PSD in 19 channels. The red, green, and blue
colors in the topography represent maximum, mean, and
minimum power, respectively, in specific bands such as delta and
gamma.

For lagged linear connectivity differences, we compared
differences between the pre-operative baseline, post-operative
CI-off, and post-operative CI-on with music stimuli conditions,
employing the t-statistics for groups with a threshold of P < 0.05,
and also corrected for multiple comparisons by performing
LORETA-KEY-built-in voxelwise randomization tests (5000
permutations).

All other descriptive statistical analyses were performed using
the SPSS software version 20.0 (SPSS Inc., Chicago, IL, USA). For
all analyses, descriptive statistical significance was set at P < 0.05.

RESULTS

Comparison of Changes in Visual Analog
Scale Tinnitus Loudness and Tinnitus
Questionnaire Scores in all Patients
Table 2 summarizes the pre- and post-operative comparisons
of NRS tinnitus loudness and TQ scores. All four patients
showed improved NRS loudness and TQ scores under the post-
operative CI-on state compared with the pre-operative baseline.
Also, compared to pre-operative NRS loudness (median, 8.5;
range, 7–9) and TQ scores (median, 61; range, 52–78), the post-
operative CI-on state showed improved NRS loudness (median,
4; range, 3–6) and TQ scores (median, 42.5; range, 29–56)
with a trend-level significance (P = 0.068; Z = 1.826 for both
comparisons, Wilcoxon signed rank test). When we compared
the post-operative CI-on and off states, the CI-on state showed
tinnitus alleviation with regard to NRS loudness and TQ score
compared with CI-off NRS loudness (median, 8.5; range, 6–
9) and TQ score (median, 61; range, 52–76) with a trend-
level significance (P = 0.068; Z = 1.826 for both comparisons,
Wilcoxon signed rank test). However, the comparison between
the pre-operative baseline and the post-operative CI-off state
showed no differences with regard to NRS loudness and TQ score
(P = 0.317; Z = 1.00 and P = 0.564; Z = 0.577, respectively,
Wilcoxon signed rank test) (Table 2).

Meanwhile, regression analyses comparing between “CI-on –
CI-off” and percent improvement in tinnitus loudness and
between “CI-on – CI-off” and percent improvement in TQ
score did not reveal any significant correlations between cortical
activity changes and percent improvement in tinnitus loudness or
TQ score.

Group Comparison with Regard to
Source-Localized Activity and Functional
Connectivity
Post-operative CI-On versus Pre-operative Baseline
Compared with the pre-operative baseline, the post-operative CI-
on condition resulted in significantly decreased activity in the
right A1 (BAs 41 and 42) and A2 (BAs 21 and 22) and in the right
OFC (BAs 10 and 11) for the delta frequency band (P < 0.01)
(Figure 1). For the other seven frequency bands, no significant
differences with regard to source-localized activity were found
between the two conditions.

On lagged linear connectivity comparison, the patients
showed decreased functional connectivity between the PCC and
A1 for the delta frequency band and between the PCC and A2 for
the beta 2 band for the post-operative CI-on state compared with
pre-operative baseline (Figure 2).

Post-Operative CI-On versus CI-Off
Compared to the cortical activity of the CI-off condition, the
subjects demonstrated significantly decreased activity in the right
A1 (BAs 41 and 42) and A2 (BAs 21 and 22) and right OFC (BAs
10 and 11) for the delta frequency band, and in the right A1 and
A2, left A2, left temporopolar cortex (TPC, BA 38), left inferior
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TABLE 2 | Pre- and post-operative comparison of numeric rating scale tinnitus loudness and tinnitus questionnaire scores in all patients (the order of the
subjects are the same as Table 1).

Subject
number

Pre-operative
NRS loudness

Pre-operative TQ
score

Post-operative
NRS loudness

(CI-on with music
stimuli)

Post-operative TQ
score (CI-on with

music stimuli)

Post-operative NRS
loudness (CI-off)

Post-operative
TQ score (CI-off)

1 8 78 3 41 8 76

2 7 60 5 44 6 58

3 9 52 3 29 9 52

4 9 62 6 56 9 64

NRS, numeric rating scale; TQ, tinnitus questionnaire.

FIGURE 1 | Comparisons between the post-operative cochlear implant (CI)-on condition and the pre-operative baseline with regard to power
spectra, sensor topography, and source-localized activity. As compared with the pre-operative baseline, the post-operative CI-on condition resulted in
significantly decreased activity in the right primary (BAs 41 and 42) and secondary (BAs 21 and 22) auditory cortices, and in the right orbitofrontal cortex (BAs 10 and
11) for the delta frequency band (P < 0.01). L, left; R, right. Color bar (right bottom) presents t-value. PSD, power spectral density.

frontal cortex (IFC, BA 47), and left OFC for the gamma band of
the CI-on condition (P < 0.01) (Figure 3).

On lagged linear connectivity comparison, no significant
differences were found between the two conditions for all eight
frequency bands.

Post-operative CI-Off versus Pre-operative Baseline
Neither source-localized cortical activity comparisons nor
lagged linear functional connectivity analysis showed statistically
significant differences between the CI-off and pre-operative
baseline conditions for all eight frequency bands.

DISCUSSION

In the current study, we investigated post-CI changes in patients
with SSD with regard to source-localized cortical activity and
functional connectivity. In short, the CI-on condition resulted
in decreased cortical activity as compared with both the CI-off

and pre-operative baseline conditions, but the CI-off and pre-
operative baseline conditions showed no significant differences.

Alleviation of Tinnitus and
Tinnitus-Related Distress by Peripheral
Reafferentation-Induced Cortical
Deactivation
All four subjects in the current study showed improvements
in NRS tinnitus loudness and TQ score. Although these
improvements were only marginally significant both for NRS
tinnitus loudness and TQ score (P = 0.068 for both parameters),
considering the small number of included subjects, the
improvements can be regarded to indicate a meaningful
alleviation of tinnitus and tinnitus-related loudness.

On source-localized cortical activity analysis, as compared
with the pre-operative baseline, the post-operative CI-on
condition demonstrated significantly decreased activity in the
right A1 and A2, and in the right OFC for the delta frequency
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FIGURE 2 | Lagged linear connectivity comparisons between the
post-operative cochlear implant (CI)-on condition and the
pre-operative baseline. The patients showed decreased functional
connectivity between the PCC and A1 for the delta frequency band and
between the PCC and A2 for the beta 2 band for the post-operative CI-on
state, as compared with the pre-operative baseline. Color bar presents
t-value.

band. Previous studies both in animals (Engineer et al., 2011) and
in human subjects (van der Loo et al., 2009) have demonstrated
that the auditory cortex (AC) plays an important role in
tinnitus perception. A recent meta-analysis on positron emission
tomography (PET) studies in tinnitus patients has also reported
increased regional cerebral blood flow in the A1 and A2 (Song
et al., 2012). Moreover, perceived tinnitus loudness is correlated
with increased contralateral source-localized activity in the AC

(van der Loo et al., 2009). In this regard, the significantly
decreased activity in the A1 and A2 in patients with SSD after
CI, compared with the pre-operative baseline, may be associated
with the improvement of tinnitus loudness in these subjects.

Moreover, significantly decreased functional connectivity
between the A1 and PCC for the delta frequency band and
between the A2 and PCC for the beta 2 band under the CI-
on condition, as compared to those under the pre-operative
baseline, may also be related to the improvement of tinnitus
loudness in these SSD subjects. PCC has been posited to be
an important component of the brain’s default mode network
(DMN) (Raichle et al., 2001; Raichle and Snyder, 2007),
which is a set of cortical areas activated when a subject is
occupied with internally focused tasks (Schlee et al., 2012).
In persistent vegetative state patients, auditory stimulation-
induced cortical activation is restricted to the A1, without
functional connectivity to the areas comprising the DMN,
including the PCC (Laureys et al., 2000; Boly et al., 2004).
In other words, functional connectivity between the A1 and
the PCC is crucial for conscious auditory perception. In
a recent study that evaluated the correlation between pre-
CI cortical activity and the extent of tinnitus improvement,
increased activity of the PCC for the delta band and increased
functional connectivity between the A1 and the PCC for
the delta band were negatively correlated with the percent
improvement of tinnitus loudness (Song et al., 2013b). This
is in line with the current results showing the significantly
decreased functional connectivity between the A1 and PCC
for the delta frequency band under the CI-on condition as
compared to those under the pre-operative baseline. That is,
functional decoupling between the A1 and PCC for the delta
band by CI may be associated with the improvement of
tinnitus under the CI-on condition as compared with the pre-
operative baseline condition. Also, the delta and beta 2 frequency
bands has been found to be important in the integrity of the

FIGURE 3 | Comparisons between the post-operative cochlear implant (CI)-on and off conditions with regard to power spectra, sensor topography,
and source-localized activity. Compared to the cortical activity of the CI-off condition, the subjects demonstrated significantly decreased activity in the right
primary (BAs 41 and 42) and secondary (BAs 21 and 22) auditory cortices (A1 and A2), and right orbitofrontal cortex (OFC, BAs 10 and 11) for the delta frequency
band and in the right A1 and A2, left A2, left temporopolar cortex (BA 38), left inferior frontal cortex (BA 47), and left OFC for the gamma band for the CI-on with
music stimulus condition. L, left; R, right. Color bar (right bottom) presents t-value. PSD, power spectral density.
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DMN in previous EEG studies (Neuner et al., 2014; Thatcher
et al., 2014). Considering this, functional decoupling of the
A1/A2 from a component of DMN for the delta and beta 2
frequency bands may have hindered conscious perception of the
abnormal activity in the auditory cortices and thus associated
with the improvement of tinnitus loudness. Thus, decreased
functional connectivity between the A1/A2 and the PCC may be
associated with the improvement of tinnitus loudness in these
subjects.

Meanwhile, significantly decreased activity in the right OFC
for the delta frequency band after CI compared with the pre-
operative baseline may be associated with the improvement of
the TQ score (i.e., tinnitus-related distress). The OFC has been
suggested to be important for emotional processing of sounds
(Blood et al., 1999; Vanneste and De Ridder, 2012) and also plays
an important role in the top-down modulation of peripheral
physiological responses to emotional experiences (Critchley
et al., 2004). Additionally, the aforementioned correlation
study between pre-CI cortical activity and the amount of
post-CI tinnitus improvement revealed that increased pre-CI
connectivity between the AC and the OFC is a predictor of
poor response to the improvement of tinnitus-related distress
(Song et al., 2013b). In particular, a previous qEEG study has
demonstrated that the OFC were more activated in highly
distressed tinnitus patients than in less distressed patients for the
delta band (Song et al., 2015b). In this regard, decreased activity
in the OFC for the delta band after CI may be associated with the
improvement of the TQ score in our case series.

One possible bias that might be crucial in the interpretation of
the comparison between the CI-on condition and pre-operative
baseline is the baseline activity of the subjects. In other words,
the differences detected in the analysis above might also be partly
affected by the changes in the baseline activity in the subjects that
might have not be detected in the analysis comparing the CI-off
condition and pre-operative baseline. To further clarify this issue,
future studies comparing these conditions repeatedly in a larger
number of subjects or comparing the CI-off condition and pre-
operative baseline serially at different time points after turning
the device off should be performed.

“Dynamic” Cortical Activity Modulation
by Peripheral Reafferentation
Although CIs starkly improved tinnitus and distress in our
current patients with SSD, when they were turned off, the
NRS tinnitus loudness and the TQ score returned to levels
close to those measured pre-operatively. Moreover, the CI-
on condition resulted in significantly decreased activity in the
right A1 and A2 and the right OFC for the delta band and
in the right A1 and A2, left A2, left TPC, left IFC, and left
OFC for the gamma band, compared with the CI-off condition.
In addition to the role of A1/A2 in tinnitus perception and
of the OFC in tinnitus-related distress described above, the
left TPC and IFC were significantly deactivated when the CI
was on. The TPC contributes to the processing of auditory
concepts (Bonner and Price, 2013) and increased pre-operative
activity of the TPC was found to be a negative predictor

of tinnitus loudness improvement in SSD patients after CI
(Song et al., 2013b). The aggravation of tinnitus loudness after
turning off the CI device may be partly due to reactivation
of the left TPC. Meanwhile, the left IFC is involved in non-
spatial auditory cognition and congruity (Michelon et al., 2003)
or cognitive reappraisal (Wager et al., 2008). In a previous
meta-analysis of PET studies in tinnitus, the IFC, or the
ventrolateral prefrontal cortex, has been found to be commonly
activated in tinnitus patients (Song et al., 2012). Therefore,
cognitive processing of tinnitus may have been disinhibited in
the current subjects after turning off the CI device, and this
disinhibition may have manifested as the aggravation of tinnitus
loudness.

When the pre-operative baseline and post-operative CI-off
conditions were compared, neither subjectively perceived
tinnitus loudness/distress nor source-localized activity showed
statistically significant differences. CI-induced peripheral
reafferentation was effective in alleviating tinnitus only when
the device was actively functioning, at least until 6 months post-
operatively. In other words, CI-related improvements in tinnitus
may be associated with peripheral auditory reafferentation-
induced dynamic suppression of tinnitus-related maladaptive
cortical activity.

Limitations of the Current Study and
Proposed Future Studies
To our knowledge, this is the first study comparing pre- and
post-operative cortical activity and functional connectivity in
SSD patients who underwent CI. Although we found several
significant findings, there are several limitations that should be
further investigated in future studies. First, only four patients
were included in this study. Although we found several cortical
areas that showed significantly decreased activity and functional
connectivity for the post-operative CI-on condition, as compared
to the pre-operative baseline or post-operative CI-off conditions,
we may have failed to discover other crucial areas that also
contribute to the improvement of tinnitus, due to the limited
statistical power. Additionally, the lack of differences between
CI-off and baseline conditions or no significant correlations
between cortical activity changes and percent improvement in
tinnitus loudness or TQ score might have been due to small
subject number-related insufficient statistical power inherent in
the current study. Second, the current study revealed dynamic
tinnitus suppression by peripheral sensory reafferentation, and
these results should be reevaluated in a future study with both
a larger number of subjects and a longer follow-up period.
In the current study, the subjects’ post-operative EEGs were
measured 6 months post-operatively, which may not have been
long enough to observe possible central changes induced by
continuous peripheral stimulus. Further studies in SSD subjects
with CI, with follow-up periods of at least 12–24 months, should
be performed to explore possible plastic changes. Third, all four
subjects in the current study were coincidentally left SSD subjects.
This may have affected the results because previous researchers
reported that cortical activity differences from normal hearing
peers are reported to be larger when the hearing loss occurred in
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the left ear compared with the right ear (Ponton et al., 2001; Hanss
et al., 2009), and left and right unilateral sensorineural hearing
loss subjects show different cortical activation patterns to sound
stimuli (Schmithorst et al., 2005). Further studies comparing
left- and right-SSD subjects with tinnitus after CI should be
performed to further explore possible differences. Fourth, the lack
of control group, composed of SSD subjects without tinnitus who
underwent CI, limits the value of comparison between the CI-on
and CI-off conditions. Future studies enrolling SSD subjects
without tinnitus who underwent CI as a control group should
be performed to further compare CI-on and CI-off conditions.
Fifth, BL-ICA-based cleaning of the CI-on condition might have
resulted in power decrease in the cleaned bands, and thus the
direct comparison between the CI-on and CI-off conditions has
inherent limitations. Future studies using auditory stimulation
of the non-deaf side may give information on what extent the
BL-ICA itself has an adverse effect on the interpretation of
the results, and thus give us more precise results. Also, future
studies using a similar study paradigm to the current study while
measuring cortical activity changes by PET may give us additional
precise information, as PET is not affected by device-related
artifacts.

CONCLUSION

Taken together, our data demonstrated that the CI-on
condition resulted in decreased cortical activity compared
with both the CI-off and pre-operative baseline conditions,
particularly in areas such as the A1/A2 and the OFC.
Also, decreased functional connectivity between the A1/A2
and the PCC were observed in the CI-on condition
compared with pre-operative baseline. However, the CI-off
and pre-operative baseline conditions showed no significant
differences with regard to source-localized activity and
functional connectivity. In this regard, CI may alleviate

tinnitus in patients with SSD not by sound stimuli-induced
cortical plastic changes, but by suppressing abnormally
active tinnitus-related cortical regions by dynamic peripheral
reafferentation.
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