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SUMMARY
Recently burst stimulation and 10 kHz stimulation have been developed as novel stimulation
designs. Both appear to be superior to classical tonic stimulation in the amount of responders
and the amount of pain suppression and have as an extra advantage that they are paresthe-
sia-free. This evolution is very important as it shifts the focus of research from better
targeting by developing new lead configurations to better communication with the nervous
system. It can be envisioned that this is only the start of a new trend in spinal cord, brain,
and peripheral nerve stimulation and that more new stimulation designs will be developed in
the near future such as pseudorandom burst stimulation, pleasure stimulation, noise stimula-
tion and reconditioning stimulation. This evolution mandates a new approach in the devel-
opment of internal pulse generators, and the most obvious approach is to develop an
upgradable stimulator, on which new stimulation designs can be downloaded, analogous to
the apps people download on their smartphones. This will create a shift from hardware driven
products to software driven stimulators.
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Introduction

Spinal cord stimulation (SCS) was developed some
50 years ago as a treatment for medically intractable
chronic pain, predominantly targeting not only ara-
chnoiditis, complex regional pain syndrome and
failed back surgery syndrome [1], but also refractory
angina [2], as well as in chronic critical limb ischemia
[3]. SCS not only reduces pain, improves quality of
life, reduces analgesic consumption, but also allows
some patients to return to work with minimal side
effects apart from paresthesias [4].

The original concept was based on the pain gate
mechanism [5], which postulated that stimulation of
large Aß fibers suppresses pain transmission through
the small unmyelinated C and small delta fibers. And
indeed, when larger myelinated fibers degenerate, the
high-threshold unmyelinated C-fibers start firing spon-
taneously in rhythmic bursts, which are related to the
pain [6,7]. The working mechanism of SCS has remained
somewhat elusive, but most likely involves a combina-
tion of local spinal as well as supraspinal mechanisms
[8,9]. At the spinal level, both the ascending dorsal
column fibers, as well as the opioidergic [10], serotoni-
nergic [11], and dopaminergic [12] descending pain

modulatory systems might be implicated in the pain-
suppressing effect.

The current neuromodulation devices, aka internal
pulse generators (IPGs), use technology originally devel-
oped for pacemakers [13]. The pacemakers were
adapted to stimulate nervous tissue, but were never
specifically designed for it. The first IPGs were therefore
using constant voltage (Medtronic) technology,
whereas later developments were based on constant
current delivery (St Jude Medical and Boston Scientific).
But they all had in common that the IPGs delivered
tonic pulses, charge-balanced (either passively- or
actively-balanced with a counter charge) after each
positive pulse. This leads to limited flexibility, as the
only modifications that can be programed into the
stimulation design are the contact polarity, pulse
width, frequency, and amplitude. That is even more
limited by the fact that in most devices the output
power to each contact is the same, even though one
IPG (Boston Scientific) is capable of delivering different
power assignments for each contact, thereby improving
flexibility.

Recently, the neuromodulation world has been chal-
lenged somewhat by the arrival of two new stimulation
designs, high-frequency stimulation, aka 10 kHz
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stimulation [14,15], commercialized by Nevro, which is a
form of tonic stimulation, and burst stimulation [16–18],
commercialized in Europe and the rest of the world by
St Jude Medical, but not yet approved in the USA.

Burst stimulation is currently the only stimulation
design that is not tonic in nature, as it delivers multiple
spikes, typically five in number, which are partially
charge-balanced after each spike and passively
charge-balanced at the end of the five spikes [17]. But
both 10 kHz and burst stimulation caused a shift from
former approaches, which were mainly based on
improving targeting by the development of multi-col-
umn leads to stimulate the spinal cord, such as the five-
column and three-column leads to improve communi-
cation with the spinal cord, brain, or peripheral nerves
by changing the stimulation design.

Is there a problem?

It is likely that the future of neuromodulation is not
restricted to better targeting, but also to development
of ever more new stimulation designs, to better com-
munication to the nervous system, whether brain,
spinal cord, dorsal root ganglion (DRG), or peripheral
nerve, ‘to communicate to the brain in a language it
understands’. In essence, the goal is to tune the therapy
to the individual patient and their pain condition. This
could create challenges for patients and payers. If every
new stimulation design/language to communicate with
the nervous system requires a newly designed IPG, it
will become costly for health systems, as an explosion
of new waveforms is expected as companies quickly
attempt to follow in this emerging trend of new stimu-
lation modes.

Is there a solution?

The purpose of this paper is to demonstrate where
the future of medical devices lies or could be moving
to, with a particular focus on the development of an
upgradable neuromodulation device or IPG that can
function as a generic neuromodulator and is capable
of being uploaded by different apps, in this case new
waveforms, such as burst stimulation. St. Jude Medical
introduced the first of such devices, the Protégé™,
and expects to launch Proclaim™ IPG, the former is
FDA-approved and the latter is CE-marked. What is
unique about these devices is that they are an
upgradable or open platform. This represents a dra-
matic shift in philosophy, from one IPG for one pur-
pose to a philosophy that reflects modern society
upgradability. We all have smartphones, being
upgraded almost every year with some new features,

and depending on what we need we upgrade our
smartphones or not. And smartphones have apps,
which make the phone very individualized, which is
what current personalized medicine is striving for in
personalized cancer treatment, personalized psychia-
try, personalized cardiology, etc. [19–21]. Thus, it fol-
lows that personalized pain medicine is to follow
once the technology is available to apply it.

The development of 10 kHz and burst stimulation
changed the field of neuromodulation because of their
paresthesia-free nature, and the demonstration that
some of these new waveforms such as burst stimulation
also modulate the medial pain pathway, that is, the
motivational/affective/emotional component of the
pain in contrast to traditional tonic waveforms [16].
The fact that both new stimulation designs can sup-
press pain better than classical tonic stimulation [14–
18,22–25] opens up an avenue for even more new
stimulation designs to be developed. Changing IPGs
for trying to improve patient outcomes will lead to
more surgery, with surgical and infectious risks and a
financial heavy burden on society. Therefore, the med-
ical device industry has no other choice than to follow
the smartphone example: generate a generic implanta-
ble pulse generator and download new stimulation
waveforms as apps, in other words, create an upgrade-
able IPG.

The advantages are both commercially and
ethically:

1. Less surgery for the patient (no replacements of
IPGs): the Hippocratic oath contains the notion of
‘primum non nocere’ (first do no harm), and being
able to download a new waveform into a generic
upgradable IPG prevents surgery, with its poten-
tial risks and complications appearing consistent
with this oath [26].

2. In failures, it is possible to recall patients when a
new upgrade is developed, without renewed sur-
gery and the promise of salvaged therapy. This
has been done before for both tinnitus and pain,
in which patients with a failure to tonic stimula-
tion were recalled, and with a custom-made pro-
grammer, the patient’s IPG was updated to burst
stimulation in a research setting, rescuing 50%
unsuccessfully treated tinnitus patients with audi-
tory cortex stimulation in burst modality [27].
Similarly, in SCS, failures to tonic stimulation
were reprogrammed to burst with the same cus-
tom-made programmer, permitting to rescue
more than 60% [22]. This clearly shows the feasi-
bility of the concept of an upgradeable stimulator.
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3. But the concept can be extended even further. In
successfully treated patients, it is possible to
recall patients when a new upgrade is devel-
oped, without renewed surgery to verify whether
pain suppression can be further improved. The
feasibility of this approach has been demon-
strated before. Using the same custom-made
programmer, patients with tinnitus were asked
whether they wanted to trial a new waveform
(burst) to verify if their tinnitus could be further
improved, and in 50% of the patients this lead to
a further amelioration. Similarly, in SCS, the same
approach improved more than 90% of the
patients who were having benefit from tonic
SCS and this was clinically relevant, with an
improvement of approximately 25%, from 50%
pain suppression to 74% pain suppression [22].

4. Another advantage of the upgradeable system
could be that it leads to a higher acceptability of
SCS if patients are convinced of the flexibility of
system: the fact that the SCS could, in the future,
become individualized or adapted to the indivi-
dual can make this treatment modality more
acceptable to the wider public, avoiding the com-
mon concept of ‘buyer’s remorse’, which accom-
panies a significant decision only to find that a
newer and better product becomes available after
the decision is made, leaving them with the anti-
quated, less capable system. Indeed, a one-size-
fits-all approach is somewhat outdated in modern
times of tailored information transmission, as
exemplified by the individual publicity companies
like Google deliver.

5. Furthermore, it is cheaper to make one IPG than
multiple and different ones for each waveform:
also, from a commercial point of view, it would
be prohibitively expensive to develop a new IPG
for each waveform that might become available.

6. Furthermore, the upgradable IPG will permit fas-
ter evolution if only software needs to be chan-
ged rather than hardware. This is especially
important in an age where the big pharma
industry is dis-investing in the development of
new neuropharmacological medication [28].
Central nervous system (CNS) disorders carry an
enormous economic burden, >$2 trillion in USA
and EU, which generates $80 billion/year for the
pharma industry. The problem is that developing
medication for CNS has 50% less chance of mak-
ing it to the market and costs 30% more than
heart medication. Knowing that 85% of drugs
never reach the market results in the fact that
no new medication is being developed for brain-

related diseases, because it is too expensive, in
view of the situation that four out of five medi-
cations fail phase III trials. Therefore, the big
pharma industry is not interested anymore in
drug development for CNS disorders. Since
2011, GSK, AstraZeneca, and Novartis have
announced closures of neuroscience divisions
globally, and Pfizer, Sanofi, Janssen, and Merck
have begun to significantly downsize CNS opera-
tions [28]. This gap in new neuropharmacological
developments can be filled in by out-licensing
[28] and by the development of new stimulation
approaches. An example is the development of
burst stimulation, which was originally developed
for tinnitus suppression by auditory cortex stimu-
lation [27,29], and later translated to the spinal
cord for pain, as well as to the peripheral ner-
vous system for pain and tinnitus, [30,31] and is
now being tested for anterior cingulate stimula-
tion in the treatment of alcohol addiction
(https://www.anzctr.org.au/Trial/Registration/
TrialReview.aspx?id=366816). Thus, an upgrad-
able IPG might extend its indications to cortex
stimulation, deep brain stimulation (DBS), DRG
stimulation, and peripheral nerve stimulation,
considering that some of these new waveforms
will be universally applicable [18].

Will there be any disadvantages linked to
upgradable IPGs?

Even though there do not seem to be inherent dis-
advantages linked to upgradable IPGs, care should be
taken on potential safety issues. The waveforms
should fulfill safety requirements with regards to
charge balancing, maximal charge delivery, ensuring
new waveforms do not result in premature battery
depletion, etc. Furthermore, the uploading should be
protected against hacking, so that no waveforms are
uploaded that could potentially harm the patient.
This will be especially important if new stimulation
designs are developed for reconditioning stimulation,
where external stimuli are paired to electrical stimula-
tion (see further). For improving safety neuromodula-
tion can partially rely on what is being developed in
the cardiac industry, where pacemaker industry,
which currently is further advanced in its safety mea-
sures, can be copied and adjusted. And similarly the
IPGs need to be protected against electromagnetic
fields, a trend that is clearly in full development,
with all major neuromodulation companies
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developing MRI and thus electromagnetic field-com-
patible devices.

It should, however, also be clear that an upgradable
system will also have its limits and will, at a certain
stage, also need to be upgraded. For example, when
sensing will become available, permitting open and
closed loop system designs, the current upgradable
devices will need hardware changes implemented,
requiring the upgradable IPGs to be upgraded them-
selves; in other words, they will need to be physically
replaced.

Five-year view

If the future of SCS will rely on the development of
upgradable IPGs, what are the new stimulation designs
that can be expected, or that could benefit or improve
the current state of SCS? In other words, what will SCS
look like in 5 years, and can this be extended to brain
stimulation, whether cortex or DBS?

What are the potential new future stimulation
designs?

Modifications of burst stimulation [pseudo-
randomness in time and/or place, more pleasurable
stimulation (vs. simply pain suppression)]

Two new developments might involve modifications of
rhythmic burst stimulation. One improvement could

involve adding pseudo-randomness in the burst deliv-
ery, so that habituation can be prevented. This could be
both in time as well as in space or combined in space
and time. Pseudo-randomness in time means that the
bursts in high frequency are presented in a pseudoran-
dom way but at a specific frequency, as demonstrated
in Figure 1. Basically, the interburst intervals vary in a
random or pseudorandom way, but the amount of
bursts and spikes does not change per second, mean-
ing that both the burst and spike frequencies remain
the same. Also, the poles of the electrodes from which
the current is delivered remain the same.

In spatial pseudorandom burst stimulation (see
Figure 2A), the poles that are activated change in a
pseudorandom way, but the burst firing itself remains
rhythmic. In combined temporal and spatial pseudoran-
dom burst stimulation, the pseudo-randomness is a
combination of both the above pseudorandom burst
stimulation designs. It creates a maximal variability,
which would be very important in preventing habitua-
tion to the stimulation, as well as preventing epilepsy in
cortical stimulation.

A second modification could involve a sequential
activation of adjacent poles of the electrode so as to
induce an antinociceptive effect by selectively activat-
ing low-threshold tactile C-fibers (see Figure 2B).
Basically, the stimulation design would mimic caressing
the skin in an electronic form, thereby transmitting the
pleasantness of tactile touch, [32,33] which is known to

Figure 1. Pseudorandom burst stimulation (in time). The interburst interval is variable, but the amount of bursts within a second
remains constant, i.e. the burst frequency remains constant, as does the spike frequency.
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exert an antinociceptive effect [34,35]. Therefore, this
stimulation design could be called pleasure stimulation.

Noise stimulation

An entirely new waveform could involve noise stimu-
lation, which mimics the naturally occurring noisy
structure of spontaneous electrical brain activity. In
the brain at rest, this structure follows a 1/fa pattern
[36–39]. Analogous to the development of burst sti-
mulation, the underlying concept of this waveform is
to mimic physiological brain and nervous system
activity [18]. Noise can have different structures, and
the different structures are named by colors. White
noise is characterized by the same power for all
frequencies, whereas pink noise has a 1/f structure

in a log-log transformation, Brown(ian) noise a 1/f2,
and black noise a 1/f3 structure (see Figure 3).

Noise itself has to be considered a signal that con-
veys information [40]. Advantages of noise in the ner-
vous system are numerous, and include (1) stochastic
resonance effect; (2) stabilization of a system; (3) crea-
tion of redundancy, which protects against mistakes or
missing input; and (4) increase in the reliability of infor-
mation transmission [41]. In summary, adding noise to a
system permits adaptive stability (against over- and
undershooting) while maintaining reliable information
transmission [41]. Stochastic resonance is a phenom-
enon where a weak signal is detected or transmitted
optimally in the presence of noise, that is, there is a
paradoxical increase of output signal-to-noise ratio [40].
The basic prerequisite for a system to exhibit stochastic
resonance is a threshold that needs to be exceeded in

Figure 2. (A) pseudorandom burst stimulation in space. The bursts are delivered from different poles of the electrode in a
pseudorandom way, (B) pleasure stimulation: a sequential activation of the different poles of the electrode attempts to mimic
caressing in an electronic form.
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order to activate the system [40]. When the signal in
itself is not strong enough to exceed the threshold,
small amounts of noise added either to the system or
the signal may occasionally suffice to trigger activation
[40]. Noise added to the somatosensory, [42,43] audi-
tory, [44,45] and visual systems [46] (=stochastic reso-
nance) improves signal detection, not only in the
respective system but also in a cross-modal way [47].
Pink noise is better than white noise for obtaining a
stochastic resonance effect [48,49].

Noise further stabilizes a system by providing the
flexibility needed by cells to adapt to change, [50,51]
and information transmission between complex sys-
tems is maximal in the condition of 1/f noise [52].
Thus, noise stimulation is ideal for conditions of
degraded signal transmission, e.g. hearing loss, visual
loss, hypoesthesia, etc., to improve signal transmission.
For example, it has been shown that transcranial ran-
dom noise electrical stimulation (tRNS) is better than
direct current or alternating current stimulation in sup-
pressing tinnitus, [53] which usually is related to hear-
ing loss [54]. A case report has further shown that tRNS
can improve neuropathic pain [55].

The feasibility of noise stimulation delivered through
implanted electrodes has been tested using a DS8000
(World Precision Instruments, Sarasota, Fl, USA) digital
stimulator and has shown that it can reduce tinnitus by
applying pink noise stimulation on the auditory cortex
and reduce pain by stimulation on the somatosensory
cortex as well as on the spinal cord. It could further
reduce spasticity by spinal cord noise stimulation (see
Table 1). The scores in the table represent a numeric
rating scale from 0 to 10 (0 = minimum or best score,
10 = maximum or worst score) obtained with burst sti-
mulation (pre) and compared to noise stimulation (post).

Reconditioning stimulation

While noise stimulation carries information, the
resultant effect is limited and cannot fundamentally

impact behavior. Alternatively, reconditioning stimu-
lation is a new concept based on the fact that it
should theoretically be possible to recondition the
brain through paired stimulation of external stimuli
with electrical stimulation of the reward system,
thereby rewarding certain stimuli and/or disreward-
ing other stimuli. For example, tinnitus and neuro-
pathic pain can be seen as a paradoxical salience
(i.e. behavioral relevance) attached to the tinnitus
sound or pain stimulus [56], thereby preventing
habituation to the phantom sound or pain, as the
sound is constantly kept conscious because it is
considered behaviorally relevant [56]. Indeed, in
both pain [57] and sound [58] stimuli, perception
of the stimuli depends on the simultaneous co-acti-
vation of the salience network (dorsal anterior cin-
gulate cortex and anterior insula) [59], and during
meditation the suppression of the salience network
correlates with an absence [60] or decrease [61] in
pain perception of painful stimuli. Furthermore, con-
sciousness itself critically depends on the functional
connectivity strength of the dorsal anterior cingulate
cortex and insula, i.e. the salience network [62].
Acute pain onset (aversion) results in negative activ-
ity change in the nucleus accumbens and pain offset
(relief) produces positive activity change in the dor-
sal anterior cingulate cortex and nucleus accumbens.
These changes are analogous in humans and rat

Figure 3. The colors of noise. Structured noise or 1/fa noise. Depending on the slope, i.e. the ‘a’ in 1/fa the noise is named by a
different color.

Table 1. First trials on spinal cord, auditory cortex, and soma-
tosensory cortex with pink noise, alpha-modulated using a
DS8000 digital stimulator. Prescores on a numeric rating scale
from 0 to 10 (0 = minimum or best score, 10 = maximum or
worst score) determine best scores obtained with burst stimu-
lation, post best scores obtained with pink noise stimulation.

Pre Post

SCS spasticity 6 4
SCS pain 6 4
SSCS pain 5.5 3.5
ACS tinnitus 5.5 3

SCS: spinal cord stimulation, ACS: auditory cortex stimulation, SSCS: soma-
tosensory cortex stimulation.
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[63,64]. However, in chronic low back pain, the
nucleus accumbens response to acute pain is
inversed in polarity, suggesting that the acute pain
relieves the ongoing back pain [64]. Thus, the para-
doxical predictive salience (of upcoming pain relief)
attached to pain is encoded in the nucleus accum-
bens and could therefore theoretically be
reconditioned.

It is theoretically conceivable that by pairing the
non-tinnitus frequencies to a rewarding stimulation in
the nucleus accumbens, the salience of the non-tin-
nitus sounds can be increased, and by not rewarding
the tinnitus-matched frequencies the relative salience
of the tinnitus-matched frequencies can be decreased
(see Figure 4). Furthermore, a disrewarding stimula-
tion in the habenula paired to the tinnitus-matched
frequency could also remove the salience of the tin-
nitus tone. However, in order to develop recondition-
ing stimulation, waveforms need to be developed
that give maximal reward by stimulating the nucleus
accumbens or give maximal disreward by stimulating
the habenula. A technique has been developed in
animals based on self-stimulation that can discrimi-
nate which waveform or stimulation design rats pre-
fer over others, thereby optimizing the waveform to
the target [65].

Expert commentary and 5 year view

With the recent development of new stimulation
designs such as burst stimulation [16–18,29] and
high-frequency stimulation [14,15], it is clear that
improvement of clinical results is not only to be
found by better targeting or better coverage of par-
esthesias, but by the development of new stimulation

designs that can tune therapy to a patient’s indivi-
dual condition. This will require the development of
adjustable or upgradable IPGs, which will mimic the
current evolution in smartphones, tablets, etc., in
other words, a generic open-platform hardware will
be required on which new stimulation designs can be
downloaded, analogous to apps for smartphones. The
Proclaim and the Protégé are the first real upgradable
stimulator/IPGs, and set the tone for the future in
developing medical devices for SCS and beyond. It
is highly likely that DBS, cortex stimulation, and per-
ipheral nerve stimulation, as well as DRG stimulation,
will also benefit from this upgradable approach, as
for example burst stimulation is also beneficial for
cortex stimulation, both somatosensory cortex [66],
auditory cortex [29], cingulate cortex [67] and periph-
eral nerve stimulation [30,31], and there is no reason
to a priori believe the same rationale will not be
applicable for DBS and DRG stimulation. The future
is upgradeable.

Disclaimer

This manuscript was written without financial support from
Saint Jude Medical, neurodivision, who developed the
Protégé and Proclaim, the first commercially available upgrad-
able IPGs.
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Figure 4. (A) pairing non-tinnitus sounds to rewarding stimulation in the nucleus accumbens could remove the paradoxical salience
attached to the tinnitus sound, (B) pairing tinnitus sounds to disrewarding stimulation in the habenula could remove the
paradoxical salience attached to the tinnitus sound.
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